Generating Green's Functions with Pylith

Outline

- Overview/Motivation
 - When/where use FE models?
- Workflow
 - From data to mesh to Green's functions to model
- Examples
 - Bam & Qeshm Island earthquakes, Iran

Astronaut photography http://eol.jsc.nasa.gov/

Effects of Crustal Structure

- Vertical layering (2D)
 - Tends to move apparent source up or down (~10% effect)
- Horizontal contrasts (3D)
 - Map into slip features, inferred geometry
 - Fialko (2006) finds 2-2.5x contrasts in So. Cal
- Goal: For generic settings, what is inversion sensitivity?
 - Generate synthetic data using cross-fault contrast
 - Find best-fit solution in elastic half space
 - Assess bias: Inferred fault dip

Choosing Model Complexity

- Case 1
 - Lots of info
 - Seismicity
 - Velocity/rigidity structure
 - Mapped faults
 - Atmospheric water vapor content
 - Computationally expensive....

Community fault model So. Cal

Choosing Model Complexity

- Case 2:
 - Sparse information
 - Mainly teleseismic EQ locations
 - No continuous GPS
 - Sporadic remote sensing

Bam EQ, courtesy E. Fielding

Choosing Model Complexity

- Case 1:
 - How do we use all this information?
 - When do we have to include all info?
 - When does it make sense to simplify?

• Case 2

- What bias do we introduce by using inadequate models?
- How should we present this error?
- Which problems can we still address?

- Step 1: Matlab
 - Define data/fault geometry
 - Define crustal structure
 - Subdivide fault
 - One patch at a time, build Cubit, Pylith input files

Vertical, strike-slip fault, divided into patches

Okada-based Green's functions

Slip on shallow fault patch

Okada-based Green's functions

Slip on deep fault patch

Inversion

- Step 2: Cubit
 - Build mesh
- Step 3: Pylith
 - Generate Green's functions
- Step 4: Matlab
 - Assemble all patches, perform inversion

- Step 2: Cubit
 - Build mesh
- Step 3: Pylith
 - Generate Green's functions
- Step 4: Matlab
 - Assemble all patches, perform inversion

- Step 2: Cubit
 - Build mesh
- Step 3: Pylith
 - Generate Green's functions
- Step 4: Matlab
 - Assemble all patches, perform inversion

Mesh quality/density?

- Discrete fault patches
 - Readily available (Okada, Poly3D)
 - Easy to visualize
 - Historical:compare with previous work
- Node, points
 - More natural comparison once Pylith Green's functions mode

- Discrete fault patches
 - Readily available (Okada, Poly3D)
 - Easy to visualize
 - Historical:compare with previous work
- Node, points
 - More natural comparison once Pylith Green's functions mode

3D version

- More misfit from shallower ramp
- Can fit almost exactly with different fault patch

- More misfit from shallower ramp
- Can fit almost exactly with different fault patch

- More misfit from shallower ramp
- Can fit almost exactly with different fault patch

- More triangular -> wider patch w/ less slip
- Moments/centroid almost identical

Examples: Sensitivity Tests

- 1. Generate synthetic data using crossfault contrast (slow)
- 2. Invert using half space (fast)
- 3. Assess potential bias

Examples: Sensitivity Tests

- Generate synthetic data using crossfault contrast (slow)
- 2. Invert using half space (fast)
- 3. Assess potential bias

Examples: Sensitivity Tests

- 1. Generate synthetic data using crossfault contrast (slow)
- 2. Invert using half space (fast)
- 3. Assess potential bias

 Δ Young's Modulus across fault

Vertical Fault Deformation Patterns

Can't fit asymmetric pattern with vertical fault

Cross-Fault Contrast Results

- Retrieve input geometry when contrast=0
- Up to 20 degree error for reasonable values
- Sensitivity depends on noise RMS, viewing geometry

Cross-Fault Contrast Results

- Retrieve input geometry when contrast=0
- Up to 20 degree error for reasonable values
- Sensitivity depends on noise RMS, viewing geometry

11/27/05, Mw 6 Qeshm Island EQ

ISS004E10656

Astronaut photography http://eol.jsc.nasa.gov/

Assessing Potential Bias in Inferred Dip

Error from noise

Error from structure

2003 Bam, Iran, Earthquake

- > 40 cm line-of-sight deformation
- Not much structural/fault location info
- How well do inversions for fault dip perform?

Data courtesy Eric Fielding

2003 Bam, Iran, Earthquake

• Pylith:

- Generate Green's functions for distributed slip inversion
- Repeat for various dip angles, crossfault contrasts

2003 Bam, Iran, Earthquake

- Increased contrast = increased dip
- Best fit still no-contrast solution, near-vertical dip
- Geometrical irregularities = large residual
- Need more complicated geometry before can assess crustal contribution

Conclusions

- Sensitivity tests can largely be done with analytic inversions
- More time consuming FE modeling (especially inversions) can be avoided for many problems
 - Large atmospheric noise
 - Known fault plane geometry
- Patch by patch Green's function generation very time consuming
 - Can be a bit more efficient, use redundant dip/strike info
 - Internal Pylith Green's function producer very desirable