
Octrees in Computational Seismology

David O’Hallaron

Director, Intel Research Pittsburgh
Associate Prof, CS and ECE, Carnegie Mellon University

CIG/SPICE meeting, October 2007

Quake Group
Carnegie Mellon University

Jacobo Bielak (CEE)
Aysegul Askan (CEE)
Leonardo Ramirez-Guzman (CEE)
Ricardo Taborda-Rios (CEE)

David O’Hallaron (CS & ECE, Intel
Research Pittsburgh)

Julio Lopez (CS & PDL)
Tiankai Tu (CS, DE Shaw)

www.cs.cmu.edu/~quake

3

Finite Element Ground
Motion Simulation

Solving

Velocity
model

Mesh
generation Analysis/Viz

Unstructured
mesh

4D vel/disp
wavefield

10s MB

10-100s GB

1-100s TBs

10s MB

Parallel
supercomputer

Powerful
workstation

Powerful
workstation

4

Hercules FE Ground Motion Code
- An end-to-end approach for parallel simulation

- Parallel mesh generation, solving, and viz
- Production ground motion code for the CMU Quake group

- Why end-to-end?
- Eliminate intermediate files.
- Fast turnaround on simulation/analysis cycle (e.g., 10 -> 8 nodes/wave)
- Enables runtime steering of visualizations

Culmination of long term collaboration among Carnegie Mellon
computer scientists and civil engineers, and domain
scientists at Southern California Earthquake Center (SCEC)

Tiankai Tu, Hongfeng Yu, Leonardo Ramirez-Guzman, Jacobo Bielak, Omar
Ghattas, Kwan-Liu Ma, David R. O’Hallaron, From Mesh Generation to
Scientific Visualization: An End-to-End Approach to Parallel Supercomputing,
Proceedings of SC06, Tampa, FL, November, 2006.

5

Solving

Velocity
model

Mesh
generation Analysis/Viz

Unstructured
mesh

4D vel/disp
wavefield

Key Hercules Idea #1

Key Idea #1: Use octrees for the input
datasets.

Output model

6

Structured Meshes
Structured mesh: Collection of

equally-sized rectangles/bricks
+ Simple to build
+ No need to store topology info

- Not wavelength adaptive
- Cannot resolve arbitrary geometry

nodes

7

Unstructured Meshes

Unstructured mesh: Collection of
different sized triangles/tetrahedra

+ Wavelength adaptive
+ Resolves arbitrary geometry

- Must store topology
- Hard to build (open problem in 3D)

element

nodes

8

Octree Meshes
Octree mesh: Hierarchical collection of different sized

squares/cubes
Interesting hybrid of structured & unstructured meshes

+ Simple to build
+ No need to store topology
+ Possess some beautiful mathematical properties
+ Efficient etree database representation enables both

» Fast parallel mesh generation (fast velocity model queries)
» Fast 4D wavefield access (fast mesh queries)

+ Wavelength adaptive

- Cannot resolve arbitrary geometries

9

Octree Basics: An Octree Domain

Pixels

0 1 2 3 4 5 6 87 109 1211 13 14 15
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

y

10

Equivalent Octree Representations

0 1 2 3 4 5 6 87 109 1211 13 14 15

x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

y

b c

e
g h
i j

k l
m

Domain Representation

a

c d m

e f k l

g h ji

b

Level
0

Level
1

Level
2

Level
3

: Interior octant : Leaf octant

Tree Representation

11

10010000_010

Append level of f to obtain
unique locational code

Morton code: Maps n-dimensional
points to one-dimensional scalars

Locational code: Appends an
octant’s level to the Morton code of
its left-lower corner

Computing Addresses of Octants

b c

e
g h
i j

k l
m

0100

10010000

1000

Interleave the bits to obtain
non-unique Morton code

Octant f’s left lower corner (4, 8)

Binary form (0100, 1000)

12

Linear Octrees

a b c d e f g h i j k l m

B-tree index

B-tree Pages
b c

e g h
i j

k l
m

a

c d m

e f k l

g h ji

b

Octants are stored on disk in
locational-code order

– Interior nodes are optional

Cool fact: the following are
equivalent:

– Sorted order on disk
– Space filling Z-order
– Preorder tree traversal

13

Key Idea: Fast Enclosing Octant Queries

b c

e
g h
i j

k l
m

Query pixel q

a

c d m

e f k l

g h ji

b

q

The following powerful fact derives from the
preorder property:

In the linear ordering on disk, h < q < i

14

Key Idea: Fast Enclosing Octant Queries

a b c d e f g h i j k l m

B-tree index

B-tree Pages

b c

e
g h
i j

k l
m

Query pixel q

Preorder property enables the
following fast lookup algorithm
for the octant enclosing q

1) Use B-tree index to find page in
log time.

2) Binary search for q in page:
a) If found return q
b) If not found return largest p

such that p < q

15

Using Octrees for CVMs
Basic idea: Each octant represents a region of the

earth with uniform material properties
(plus/minus some epsilon)

Construction outline:
1. Sample entire region at desired spatial resolution (e.g. 200m)

– Creates a complete octree (regular grid)
2. Iteratively aggregate octants bottom up, one later at a time.

Key Issue: Initial regular grid before aggregation
could be terabytes or petabytes

Solution: GroundMR: Parallel cluster algorithm
based on Open source Hadoop version of
Google’s map-reduce framework

16

Map/Reduce Primer

Map
phase

worke
r

worke
r

worke
r

worke
r

Reduce
phase

worke
r

worke
r

Input
tuples
(k, v)

Intermediate
tuples

(k’, list(v’))

Output
(k’’, v’’)

Input files are statically
partitioned into Map tasks
Map tasks apply user-specified Map function to each

input tuple, producing one or more intermediate tuples
Intermediate tuples are sorted within

each bucket by M/R runtime
Reduce tasks apply Reduce function to

each intermediate tuple, producing the final output
Intermediate tuples are partitioned into buckets by

an optional Partition function, usually a hash

17

GroundMR strategy

Image credit: Amit Chourasia, Visualization Services, SDSC

Map: Sample entire region at
target resolution

18

GroundMR strategy

Image credit: Amit Chourasia, Visualization Services, SDSC

Reduce: Coalesce neighbors
with similar characteristics

Map: Sample entire region at
target resolution

19

GroundMR Performance

100 x 100 x 100km at 100m spacing
– ~10 minutes on 48 nodes

Well-suited for Map/Reduce
– >50X data reduction after coalescing

– Linear parallel speedup

Data reduction

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

0 5 10 15 20

Map/Reduce round

#
 o

f
s
a
m

p
le

s 16M
300K

Image from Harvard Dept. of Earth & Planetary Sciences

Parallel speedup

0

2000

4000

6000

8000

10000

0 5 10 15 20 25 30 35 40 45

of nodes

R
u

n
ti

m
e

 (
s

)

20

Using Octrees for FEM Meshes
Basic idea: Each octant represents one element

Construction outline:
1. Sample material properties at the corners of octant
2. If octant diagonal too small, then subdivide
3. Adjust neighboring octants to maintain 2:1 constraint
4. Recursively apply 1-4

A key issue: Need fast queries of material model

Solution: indexed etree database structures

2:1

21

Solving

Etree cvm

Mesh
generation Analysis/Viz

Etree mesh

Key Hercules Idea #2

Key Idea #2: Each octree input data set is an etree
database

etree library etree library etree library

Output model

4D velocity
wavefield

22

The Etree Library
C library with 22 functions for manipulating large

linear octree files (called etrees) on disk
– Opening and closing etrees
– Inserting and deleting octants and subtrees
– Support for aggregate queries on internal nodes (Brad Aagaard)
– Searching for octants
– Traversing octants in Z-order (preorder traversal)
– Loading and storing application metadata

Supports 3D or 4D spatial data sets
Portable file format

– Standard header characterizes byte ordering and data sizes
– Text trailer contains arbitrary application-level metadata

Code and documentation available on the Web
– www.cs.cmu.edu/~euclid

23

Community Applications of Etrees
Brad Aagaard (USGS)

– Wrote a query package (based on the open source PROJ4 library)
that can query etree velocity models in either lat/lon/depth or
UTM/depth. Used by SF06 simulation project:

– PROJ4 library:
» http://proj.maptools.org

– Brad’s etree query library and an etree version of the Central
California Velocity Model (cencalcvm):

» ftp://ehzftp.wr.usgs.gov/baagaard/cencalvm/
– Additional info and manual pages for cencalcvm available at:

» http://www.sf06simulation.org/geology/velocitymodel/querydo
c/index.html

Artie Rodgers (LLNL)

24

Solving

Etree cvm

Meshgen/
partition Analysis/Viz

Key Hercules Idea #3

Key Idea #3: Run entire finite element simulation (mesh
generation, solving, and visualizing), in place and in
parallel (end-to-end simulation) [Tu, O’Hallaron,
Ghattas, SC04, Tu et al, SC06, Analytics Challenge
Winner, Tu et al, SC06]

etree lib

Parallel Supercomputer System

herc lib herc lib

Partitioned in-situ distributed mesh data structure

herc lib

Etree mesh
(opt)

Wavefield
(opt)

25

End-to-end Simulation

Solving

Velocity
model

Online
Analysis/Viz

Unstructured
mesh

4D vel/dis
wavefield

10s MB 10-100s GB 1-100s TBs

Parallel supercomputer w/1-10Ks PEs

x20K timesteps

Distributed File System

Mesh gen/
Partitioning

Partitioned in-situ distributed mesh data structure

Dynamic remeshing

Offline
Analysis/Viz

Workstation
cluster

26

Hercules Performance (Tu et al, SC06)

Processors 1 16 52 184 748 2000
Frequency (Hz) 0.23 0.5 0.75 1 1.5 2
Elements 6.61E+5 9.92E+6 3.13E+7 1.14E+8 4.62E+8 1.22E+9
Nodes 8.11E+5 1.13E+7 3.57E+7 1.34E+8 5.34E+8 1.37E+9

Anchored 6.48E+5 9.87E+6 3.12E+7 1.14E+8 4.61E+8 1.22E+9
Hanging 1.63E+5 1.44E+6 4.57+6 2.03E+7 7.32E+7 1.48+8

Max leaf level 11 13 13 14 14 15
Min leaf level 6 7 8 8 9 9
Elements/PE 6.61E+5 6.20E+5 6.02E+5 6.20E+5 6.18E+5 6.12E+5
Time steps 2000 4000 10000 8000 2500 2500
E2E time (s) 12911 19804 38165 48668 13033 16709

Replication(s) 22 71 85 94 187 251
Meshing(s) 20 75 128 150 303 333
Solver(s) 8381 16060 31781 42892 11960 16097
Vis(s) 4488 3596 6169 5528 558 *

E2E t/ts/e/PE(μs) 9.77 7.98 7.93 7.86 8.44 10.92
Sol t/ts/e/PE (μs) 6.34 6.48 6.60 6.92 7.74 10.52
Mflops/sec/PE 569 638 653 655 * *

Scenario: LA Basin (100km x 100km x 37.5 km), SCEC CVM Version
2.0; minimum shear wave velocity 100m/s, Lemieux at PSC

1

1

2

3

27

An example of how octrees simplify the
design of a parallel end-to-end simulation

Key parallel computer problem: Given a global
element id E, which processor P owns E?

Octree solution:
– Sort elements by locational code order (space filling z-order).
– Assign each processor a contiguous chunk of sorted elements.
– Compute a small interval table with min and max locational

codes on each processor.
– Mapping from element to processor performed by binary search

of interval table.

Sorted locational codes
…

P1 P2 P3 P4 …

28

Future Directions: Standard
Velocity Model Representations

Proposal: Adopt etree database as the standard
queryable representation for velocity models and
meshes
– Queryable CVM required for any unstructured FE code
– Queryable mesh required to index and query FE output wavefield.

Proposal: Develop parallel tool for automatic
generation of sampled etree fields
– Quantize and aggregate given some global error constraint
– Standalone program
– Arbitrary field function dynamically linked from shared library (dll)

29

Conclusions
1. Octree meshes are an intriguing compromise

between structured and unstructured meshes

2. We should be using time and space efficient
queryable database structures such as etrees for our
velocity models and meshes:

– Domain sizes and spatial resolutions are increasing
– Fast queryable CVMs are required for FEM mesh generation
– Fast queryable meshes are required to index and access FEM

output wavefield.

30

Unused slides

31

The Physical Simulation Process

Earthquake ground motion in
San Fernando valley

Physical
System

mesh

element
node

Computer
Model

FEM solver

Numerical
Model

Galerkin discretization

t

simulation results

Visualization
Model

Animation

Physical
Model

Velocity model

Mathematical
Model

Wave propagation equation

() ()[]
2

2

t

u
Iuuu

T

!

!
=•"+"+"•"

v
vvvv

#$µ

32

Future Directions: “Big Data”
Claim #1: In the future, the most interesting parallel

applications will involve manipulating and
analyzing big data.

Examples:
– Generating unstructured hexahedral and tetrahedral meshes
– Understanding 4D fields generated by physical simulations
– Verifying and validating physical simulations
– Processing medical images
– Real time sensor inferencing
– Mining and processing crawled web data

33

Future Directions in Software:
Computational Database Systems

Claim #2: Big data will be manipulated by
computational database systems (Cods) that
couple database queries with complex operations.

Properties of Cods:
– All data stored in queryable indexed databases

» “Flat files don’t cut it anymore!”
– Manipulate big data by querying and updating databases
– Queries produce derived databases
– Data grows and evolves

Etree cvms and meshes are just a start
– We need a similar capability for wavefields

34

Future Directions in Machines:
Interactive Superclusters

Claim #3: Big data will be hosted and manipulated
on interactive data-intensive superclusters, rather
than traditional batch supercomputers.

Implications:
– Superclusters are essentially storage devices with massive

parallel computational capability
– Emphasis on response time rather than throughput

Recent Google/IBM announcement on “cloud
computing” for academic research a good start.

