

SPECFEM3D_GLOBE

The SPECFEM3D source code is freely available
for academic non-commercial research at

http://www.gps.caltech.edu/~jtromp/research/downloads/register.html

Mostly developed at Caltech (USA) and University of Pau (France)
History: v1.0: 1999/2000 ; v3.6: 2005; v4.0: today

Min Chen
Vala Hjörleifsdóttir

Sue Kientz
Dimitri Komatitsch

Qinya Liu
Alessia Maggi
David Michéa
Brian Savage

Bernhard Schuberth
Leif Strand
Carl Tape

Jeroen Tromp

http://www.gps.caltech.edu/~jtromp/research/downloads/register.html

Brief history of numerical methods

 Seismic wave equation : tremendous increase of computational power	⇒
development of numerical methods for accurate calculation of synthetic
seismograms in complex 3D geological models has been a continuous effort in
last 30 years.

 Finite-difference methods : Yee 1966, Chorin 1968, Alterman and Karal 1968,
Madariaga 1976, Virieux 1986, Moczo et al, Olsen et al. : difficult for boundary
conditions, surface waves, topography, full Earth

 Boundary-element or boundary-integral methods (Kawase 1988, Sanchez-
Sesma et al. 1991) : homogeneous layers, expensive in 3D

 Spectral and pseudo-spectral methods (Carcione 1990) : smooth topographies
and media, difficult for boundary conditions, difficult on parallel computers

 Classical low-order finite-element methods (Lysmer and Drake 1972, Marfurt
1984, Bielak et al 1998) : linear systems, large amount of numerical dispersion

Spectral-Element Method

 Developed in Computational Fluid Dynamics
(Patera 1984)

 Introduced for 3D elastodynamics by Komatitsch
et al., Chaljub et al.

 Large curved “spectral” finite-elements with
high-degree polynomial interpolation: accuracy of
a pseudospectral method, flexibility of a finite-
element method

 Mesh honors the main discontinuities (velocity,
density) and topography
 Very efficient on parallel computers, no linear

system to invert (diagonal mass matrix)

Curved 27-node elements are mapped to unit
cube

x  ξ =∑
a =1

27

N
a
ξ  x

a

provides efficient way of capturing curvature
of sphere, and accuracy for surface waves

High-degree pseudospectral finite elements:
Number of integration Gauss Lobatto
Legendre (NGLL) points = 5 to 9 usually

Equations of Motion

Differential or strongstrong form (e.g., finite differences):

We solve the integral or weakweak form:

+ attenuation (memory variables) and ocean load

ρ∂
t

2 s=∇⋅ Τf

∫ ρ w⋅∂
t

2 sd 3 r=−∫∇ w:Τ d 3 r

Solid :

Fluid :

We use a generalized velocity potential

xp t∂=
the integral or weak form is:

Differential or strong form:

χ

⇒ three times cheaper than in the solid (scalar potential, not vector)
⇒ natural coupling with solid

∫κ−1 w∂
t

2 xd 3 r= −∫ ρ−1

∇ w⋅∇ xd 3 r∫
 F−S

w n⋅ v d 2 r

p=∂
t
x

ρ∂
t
v=−∇ p ∂

t
p=−κ ∇⋅v

Μ:∇ w r
s
 S  t  −∫

 F−S

w⋅Τ⋅nd 2 r

The global earth

Need accurate numerical modeling to study Earth structure (global scale)

Very large models at high frequency (3D Earth)

Complexity: classical methods (ray tracing, finite difference, pseudo-spectral) do not do not
workwork for this problem (surface waves, anisotropy, fluid/solid interfaces, Earth’s crust
etc.)

The challenge of the global earth :

 A slow, thin, highly variable crust

 Sharp radial velocity and density discontinuities

 Fluid-solid boundaries (outer core of the Earth)

 Anisotropy

 Attenuation

 Ellipticity

 topography and bathymetry

 Rotation

 Self-gravitation

 3D mantle and crust models (lateral variations)

SPECFEM3D GLOBE

Known problems in version v3.6

− Very significant load imbalance

 Imbalance induced by the mesh
 Imbalance induced by the cache misses

− Problems with I/O when all the processors read or write large files (topography, seismograms etc) from
a remotely-mounted home file system (GPFS, NFS...) : In Marenostrum (Barcelona), we crashed the
file system in 2006

− Overall performance could be improved

What's new in v4.0?

− new doubling brick in the mesh, new perfectly load-balanced mesh

− more flexible routines for mesh design, one more doubling level

− In the inner core, new inflated central cube with optimized shape

− far fewer mesh files saved by the mesher

− Better one layer crust version for 1D models (better stability => less CPU time needed)

− Better sampling in the crust

− Far fewer cache misses: program runs faster (up to a factor of 3.3 on Marenostrum, 1.6 on pangu)

− Same number of cache misses in each slice => no more imbalance induced by cache misses

− the seismograms are now appended and not rewritten entirely each time, they are sent directly on the
master by MPI, thus no more need to collect them on the nodes at the end of the simulation.

The Cubed Sphere

“Gnomonic” mapping (Sadourny 1972)

Ronchi et al. (1996), Chaljub (2000)

Analytical mapping from six faces of cube to unit sphere

SPECFEM3D GLOBE v3.6

Element size needs to increase with
depth because of velocity gradients to
keep a similar number of points per
wavelength

Regular mesh does not work near
center: the mesh must be adapted =>
doubling layers

With the old brick, doubling in two
directions in the same layer was not
possible, therefore made in differents
layers for each type of chunk (A, B & C)
=> different number of elements ⇒
load imbalance

Phenomenon even worse because one
doubling in the anisotropic layer,
where 21 arrays are needed

SPECFEM3D GLOBE v4.0

A new mesh brick allows us to get rid of
the three types of mesh chunks (A, B and
C) and use the same number of elements
in all the slices instead

The full doubling brick is obtained by
symmetry based on the basic brick

Makes it possible to carry out the doubling
on two directions in the same layer

Thus the number of operations performed
in each block is the same => load balancing
very significantly improved and close to
perfect.

SPECFEM3D GLOBE

detail of the v3.6 mesh detail of the v4.0 mesh

Mesh of the v3.6

Only 3 doubling
layers: not optimal
because oversampling
at the top of the inner
core

Second doubling near
the d670 discontinuity,
not optimal at all
because subsampling
in the middle of the
mantle and lower
mantle

Central cube not
inflated => bad
skewness and aspect
ratio for the elements
near the central cube

V3.6

Mesh of the v4.0

4 doubling layers:
much better stability
condition at the top of
the inner core

Perfectly balanced
number of elements in
all chunks

New inflated central
cube => better
skewness and aspect
ratio for the elements
near the central cube

Depth of the doubling
layers better adapted
to the model to
guarantee best
possible sampling

V4.0

Mesh of the v4.0

Depth of the doubling layers better adapted to the model to guarantee best possible sampling

Small elements, poor stability

Large elements, poor sampling

Inflated central cube

Shape of central cube has been optimized using two
variables

« radius » i.e. size of the central cube

its « inflate » factor

 ... and based on four criteria

skewness (average & worst)

aspect ratio (average & worst)

The cache hierarchy on modern processors

Memory: principle of locality

The principle of locality deals with the process of accessing a single resource multiple times

− Temporal locality: a resource referenced at one point in time will be referenced again sometime in
the near future

− Spatial locality: the likelihood of referencing a resource is higher if a resource in the same
neighborhood has been referenced

− Sequential locality : memory is accessed sequentially

Locality must be optimized in loops that tend to reference arrays or other data structures by indices.

Increasing and exploiting locality of memory references is an important optimization technique

Optimization of global addressing

In 3D and for NGLL=5, for a regular hexahedral mesh there are:

125 GLL integration points in each element

27 belong only to this element (21.6%)

54 belong to 2 elements (43.2%)

36 belong to 4 elements (28.8%)

8 belong to 8 elements (6.4%)

=> 78.4% of the GLL integration points belong to at least 2
elements

=> it is crucial to reuse these points by keeping them in the cache

The mesh is created element by element, then the common points are identified, and a global
addressing is created:

1 <= global_addressing(num_element, i, j, k) <= total number of GLL points

This array must be reordered once and for all in the mesher to optimize the future memory access
order of the points and elements in the solver, in order to maximize spatial and temporal locality

Sorting of the elements

2 10 125

1 3 6 8

4 9 13 15

7 11 14 16
To increase spatial and temporal locality for the global
access of the points that are common to several elements,
the order in which we access the elements can be optimized.

The goal is to find an order that minimizes the memory
strides for the global arrays.

We use the classical reverse Cuthill-McKee (1969) algorithm,
which consists in renumbering the vertices of the graph to
reduce the bandwidth of the adjacency matrix

Sorting the elements with the Cuthill-McKee algorithm before renumbering the global index
table also increases the spatial and temporal locality:

- spatial locality, because the common points of the connected elements will be stored
statistically closer in memory

- temporal locality, because these common points will be reaccessed sooner

Loop splitting

! **
! big loop over all spectral elements in the solid
! **

! set acceleration to zero
 accel(:,:) = 0._CUSTOM_REAL

 do ispec = 1,NSPEC_CRUST_MANTLE
 do k=1,NGLLZ
 do j=1,NGLLY
 do i=1,NGLLX

... ! work on arrays(ispec,i,j,k)

 enddo
 enddo
 enddo

...

! sum contributions from each element to the global mesh and add gravity terms
 do k=1,NGLLZ
 do j=1,NGLLY
 do i=1,NGLLX
 iglob = ibool(i,j,k,ispec)
 accel(1,iglob) = accel(1,iglob) + sum_terms(1,i,j,k)
 accel(2,iglob) = accel(2,iglob) + sum_terms(2,i,j,k)
 accel(3,iglob) = accel(3,iglob) + sum_terms(3,i,j,k)
 enddo
 enddo
 enddo
 enddo ! spectral element loop

Impact of loop inlining / splitting / reordering

Here we call
Deville et al. (2002)

Results for load balancing: instructions

 Number of instructions executed in each slice is now well balanced

 Cuthill-McKee has almost no effect on that because we use high-order finite elements (of
Q4 type), each of them fits in the L1 cache and for any such element we perform a very
large number of operations using data that is already in L1

 Cuthill McKee sorting has been removed from v4.0 because of side effects (bugs); it will
be reintroduced in v4.1 once these bugs are resolved, but performance improvement
should be small (maybe even negligible?)

V4.0 with Cuthill-McKee V4.0 without Cuthill-McKee

Analysis of parallel execution performed with Prof. Jesús Labarta in Barcelona
(Spain) using his Paraver software package

Results for load balancing: cache misses

After adding Cuthill-McKee sorting, global
addressing renumbering and loop reordering we get
a perfectly straight line for cache misses, i.e. same
behavior in all the slices and also almost perfect load
balancing.

The total number of cache misses is also much
lower than in v3.6

CPU time (in orange) is also almost perfectly aligned

V4.0

V3.6

V4.0V4.0

Results of cache use optimization on Marenostrum

(measured time can fluctuate in a range of ± 2% because of system load)

We gain a factor of 1.55 in CPU time on pangu (Intel Itanium) and on AMD Opteron,
and a factor of 3.3 (!!) on Marenostrum (the IBM PowerPC is very sensitive to cache
misses)

Summary of results of “time” command for a serial run, with several improvements
implemented or not.

Split loop User Sys

No No No 4776.00 4.77

No No Yes 4259.18 5.45

Yes No No 1589.29 2.16

Yes Yes No 1509.71 2.40

Yes Yes Yes 1466.24 2.09

Global array
sorted

Cuthill McKee

BLAS 3
(Basic Linear Algebra Subroutines)

Can we use highly optimized BLAS matrix matrix products (90% of computations)?

For one element: matrices (5x25, 25x5, 5 x matrices of (5x5)), BLAS is not efficient: overhead is
too expensive for matrices smaller than 20 to 30 square.

If we build big matrices by appending several elements, we have to build 3 matrices, each
having a main direction (x,y,z), which causes a lot of cache misses due to the global access
because the elements are taken in different orders, thus destroying spatial locality.

Since all arrays are static, the compiler already produces a very well optimized code.

5x 5 x NDIM x Nb elem ...
5

5
5

=> No need to, and cannot easily use BLAS

=> Compiler already does an excellent job for small static loops

Collaboration with Nicolas Le Goff (Univ of Pau, France)

Non-blocking MPI

Proc A Proc B

Boundary computation
MPI_Isend MPI_Isend
MPI_Irecv MPI_Irecv

Inner element computation

MPI_Wait MPI_Wait

Add contributions of neighbours

Another way to optimize MPI code is to overlap communications with computations using non-
blocking MPI. But, for our code, the overall cost of communications is very small (< 5%) compared
to CPU time.

Also, looping on boundary elements contradicts Cuthill-McKee order and therefore causes cache
misses.

Collaboration with Roland Martin and Nicolas
Le Goff (Univ of Pau, France)

=> No need to use non blocking MPI because potential gain
is comparable to overhead

=> Tested in 2D, and we did not gain anything significant

A very large run for PKP phases at 2 seconds

 The goal is to compute differential effects on PKP waves

 Very high resolution needed (2 to 3 seconds typically)

 Too big for current big machines (pangu: 4000
processors, Marenostrum 10000 processors) therefore we
convert the mantle to acoustic instead of elastic and
remove the crust because we are only interested in
differential effects on P phases

 We keep an elastic anisotropic medium in the inner core
only

 We can then design a mesh that is accurate down to
periods of 2 seconds for P waves and that fits on 2166
processors (6 blocks of N x N slices, with
N = 19)

 The mesh contains 126 billion points (the “equivalent” of a 5000 x 5000 x 5000
grid); We use 50000 time steps in 60 hours of CPU on 2166 processors in
Barcelona. Total memory used is 3.5 terabytes.

 Calculations with v4.0 (acoustic mantle, no crust) are finished, the code performed
well and performance levels were very satisfactory; the analysis of the seismograms
is under way

Normal mode benchmark

Conclusions and future work

Conclusions :

− New balanced and optimized mesh

− Balanced code (number of instructions and cache misses)

− Far fewer cache misses => program runs faster

− No more I/O problems on distributed file systems

− No need for BLAS3 or non-blocking MPI

Future work :

− 4 doublings => need 2 basic bricks too construct one symmetrized doubling brick
=> 32 elements block limitation => NEX_XI / NPROC_XI = 32*x. In v4.1, we will
get rid of this limitation to obtain blocks of 16 elements as in v3.6.

− Split central cube in 2 with MPI to have better load balancing and remove
bottleneck (many slices send to one processor)

− Merge the mesher and the solver (not simple: static arrays => problem of
memory reuse).

− Debug Cuthill-McKee side effects.

SPECFEM3D Portal

