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“A very popular error — having the courage of one's
convictions: Rather it is a matter of having the courage
for an attack upon one's convictions.”

— Friedrich Wilhelm Nietzsche
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Why Optimal Solvers?
Why Optimal Algorithms?

@ The more powerful the computer,
the greater the importance of optimality
o Example:
o Suppose Alg; solves a problem in time CN?, where N is the input size
e Suppose Alg, solves the same problem in time CN
e Suppose Algy and Alg, are able to use 10,000 processors
@ In constant time compared to serial,

o Algl can run a problem 100X larger
e Alg2 can run a problem 10,000X larger

@ Alternatively, filling the machine’s memory,

o Algl requires 100X time
o Alg2 runs in constant time
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Why Optimal Solvers?
Linear Convergence

Convergence to ||r|| < 107°||b|| using GMRES(30)/ILU

Elements | lterations
128 10
256 17
512 24

1024 34
2048 67
4096 116
8192 167
16384 329
32768 558
65536 920
131072 1730
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Why Optimal Solvers?
Linear Convergence

Convergence to ||r|| < 107%||b|| using GMRES(30)/MG
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Multigrid for Unstructured Meshes

Why not use AMG?

o Of course we will try AMG

o BoomerAMG, ML, SAMG, ASA
@ Problems with vector character
@ Geometric aspects to the problem

o Material property variation
o Faults
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Multigrid for Unstructured Meshes

Coarsening

@ Users want to control the mesh

@ Developed efficient, topological
coarsening

o Miller, Talmor, Teng
algorithm

@ Provably well-shaped hierarchy
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Multigrid for Unstructured Meshes

Miller-Talmor-Teng Algorithm

- 18- 15

Simple Coarsening

@ Compute a spacing function f for the mesh (Koebe)
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Multigrid for Unstructured Meshes

Miller-Talmor-Teng Algorithm

- 18- 15

Simple Coarsening

@ Compute a spacing function f for the mesh (Koebe)
@ Scale f by a factor C > 1
© Choose a maximal independent set of vertices for new f
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Multigrid for Unstructured Meshes

Miller-Talmor-Teng Algorithm

- 18- 15

Simple Coarsening
@ Compute a spacing function f for the mesh (Koebe)
@ Scale f by a factor C > 1
© Choose a maximal independent set of vertices for new f
@ Retriangulate
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Multigrid for Unstructured Meshes

Miller-Talmor-Teng Algorithm

N

Caveats

© Must generate coarsest grid in hierarchy first
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Multigrid for Unstructured Meshes

Miller-Talmor-Teng Algorithm

N

Caveats
© Must generate coarsest grid in hierarchy first

@ Must choose boundary vertices first (and protect boundary)
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Multigrid for Unstructured Meshes

Miller-Talmor-Teng Algorithm

Caveats
© Must generate coarsest grid in hierarchy first
@ Must choose boundary vertices first (and protect boundary)

© Must account for boundary geometry
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Multigrid for Unstructured Meshes

GMG Performance

For simple domains, everything works as expected:
Linear solver iterates are constant as system size increases:

KSP Tterates
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Multigrid for Unstructured Meshes

GMG Performance

For simple domains, everything works as expected:
Work to build the preconditioner is constant as system size increases:
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Multigrid for Unstructured Meshes

Reentrant Problems

@ Reentrant corners need nonnuiform refinement to maintain accuracy

o Coarsening preserves accuracy in MG without user intervention
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Multigrid for Unstructured Meshes
Reentrant Problems

@ Reentrant corners need nonnuiform refinement to maintain accuracy
@ Coarsening preserves accuracy in MG without user intervention

Reentrant Corner Error

a.1 ] — —r
Unrefined Pacman —+—
Refimed Pacman ——«——
g2.e8 r -
5 @.e8 | \‘/ ]
C
[
L
o B,84 - B
1
B.o2 \\‘x\‘ _
@ 1 TR BRI 1

198 1960 10a0a 198806 1le+B86
M. Knepley (ANL) PyLith AMR '07 1 /20



Multigrid for Unstructured Meshes

Reentrant Problems

2
Exact Solution for reentrant problem: u(x,y) = risin(36)
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Multigrid for Unstructured Meshes

GMG Pe

Linear solver iterates are constant as system size increases:

rmance

KSP Performance
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Multigrid for Unstructured Meshes
GMG Performance

Work to build the preconditioner is constant as system size increases:

Comparison Performance
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Coupled Problems
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© Coupled Problems
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Coupled Problems
Difficulties

We would like to couple
@ dynamic rupture

@ quasi-static relaxation

However, we must cope with
o different length scales
o different time scales

@ solving full algebraic system
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Coupled Problems
Length Scales

We assume that
@ we can produce adequate meshes for each subproblem
@ these meshes will change slowly during the simulation

@ each subproblem admits an efficient, multilevel solver

Our proposed solution is then

© Create a single, adapted mesh
© For multiple coarse hierarchies

e Can quickly coarsen where solution is smooth

© Solve each subproblem on its own hierarchy
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Coupled Problems
Time Scales

We assume that
@ we can separate time scales a priori

@ change slowly over the simulation

Our proposed solution is then
@ to formulate the problem as spacetime FEM

@ use Multi-Adaptive Galerkin timestepping

Multi-Adaptive Galerkin Methods for ODEs |,
Anders Logg, SISC, 24, pp. 1879-1902, 2003.
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Coupled Problems
Algebraic Solution

We assume that

@ each subproblem has an efficient, scalable solver

Our solution is then
@ use Jacobian-free Newton
@ use physics-based (Schwartz) preconditioning
@ could also do this with FAS

Jacobian-free Newton-Krylov methods: a survey of approaches and applications,
D.A. Knoll and D.E. Keyes, JCP, 193, 2, pp. 357-397, 2004.
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Actual Work

Outline

@ Actual Work
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PETSc Work

@ New boundary protection scheme
o Better preservation of embedded boundaries

@ Replace mesh generator call with flips
e Do not need point insertion
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PyLith Work

@ Replace KSP solver with DMMG

o Enables GMG
e Enables nonlinear solver

o Fix MG interpolation for cohesive elements

e Collocation
o Weighted average in a ball
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