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Questions

“A very popular error – having the courage of one’s
convictions: Rather it is a matter of having the courage

for an attack upon one’s convictions.”
— Friedrich Wilhelm Nietzsche
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Why Optimal Solvers?

Why Optimal Algorithms?

The more powerful the computer,
the greater the importance of optimality

Example:

Suppose Alg1 solves a problem in time CN2, where N is the input size
Suppose Alg2 solves the same problem in time CN
Suppose Alg1 and Alg2 are able to use 10,000 processors

In constant time compared to serial,

Alg1 can run a problem 100X larger
Alg2 can run a problem 10,000X larger

Alternatively, filling the machine’s memory,

Alg1 requires 100X time
Alg2 runs in constant time
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Why Optimal Solvers?

Linear Convergence

Convergence to ||r || < 10−9||b|| using GMRES(30)/ILU

Elements Iterations

128 10
256 17
512 24

1024 34
2048 67
4096 116
8192 167

16384 329
32768 558
65536 920

131072 1730
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Multigrid for Unstructured Meshes

AMG

Why not use AMG?

Of course we will try AMG

BoomerAMG, ML, SAMG, ASA

Problems with vector character

Geometric aspects to the problem

Material property variation
Faults
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Multigrid for Unstructured Meshes

Coarsening

Users want to control the mesh

Developed efficient, topological
coarsening

Miller, Talmor, Teng
algorithm

Provably well-shaped hierarchy
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Multigrid for Unstructured Meshes

Miller-Talmor-Teng Algorithm

Simple Coarsening

1 Compute a spacing function f for the mesh (Koebe)

2 Scale f by a factor C > 1

3 Choose a maximal independent set of vertices for new f

4 Retriangulate
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Multigrid for Unstructured Meshes

Miller-Talmor-Teng Algorithm

Caveats

1 Must generate coarsest grid in hierarchy first

2 Must choose boundary vertices first (and protect boundary)

3 Must account for boundary geometry
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Multigrid for Unstructured Meshes

GMG Performance

For simple domains, everything works as expected:
Linear solver iterates are constant as system size increases:
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Multigrid for Unstructured Meshes

Reentrant Problems

Reentrant corners need nonnuiform refinement to maintain accuracy

Coarsening preserves accuracy in MG without user intervention
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Multigrid for Unstructured Meshes

Reentrant Problems

Exact Solution for reentrant problem: u(x , y) = r
2
3 sin(2

3θ)
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Coupled Problems

Difficulties

We would like to couple

dynamic rupture

quasi-static relaxation

However, we must cope with

different length scales

different time scales

solving full algebraic system

M. Knepley (ANL) PyLith AMR ’07 14 / 20



Coupled Problems

Difficulties

We would like to couple

dynamic rupture

quasi-static relaxation

However, we must cope with

different length scales

different time scales

solving full algebraic system

M. Knepley (ANL) PyLith AMR ’07 14 / 20



Coupled Problems

Length Scales

We assume that

we can produce adequate meshes for each subproblem

these meshes will change slowly during the simulation

each subproblem admits an efficient, multilevel solver

Our proposed solution is then

1 Create a single, adapted mesh
2 For multiple coarse hierarchies

Can quickly coarsen where solution is smooth

3 Solve each subproblem on its own hierarchy
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Coupled Problems

Time Scales

We assume that

we can separate time scales a priori

change slowly over the simulation

Our proposed solution is then

1 to formulate the problem as spacetime FEM

2 use Multi-Adaptive Galerkin timestepping

Multi-Adaptive Galerkin Methods for ODEs I,
Anders Logg, SISC, 24, pp. 1879–1902, 2003.
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Coupled Problems

Algebraic Solution

We assume that

each subproblem has an efficient, scalable solver

Our solution is then

use Jacobian-free Newton

use physics-based (Schwartz) preconditioning

could also do this with FAS

Jacobian-free Newton-Krylov methods: a survey of approaches and applications,
D.A. Knoll and D.E. Keyes, JCP, 193, 2, pp. 357–397, 2004.
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Actual Work
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Actual Work

PETSc Work

New boundary protection scheme

Better preservation of embedded boundaries

Replace mesh generator call with flips

Do not need point insertion
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Actual Work

PyLith Work

Replace KSP solver with DMMG

Enables GMG
Enables nonlinear solver

Fix MG interpolation for cohesive elements

Collocation
Weighted average in a ball
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