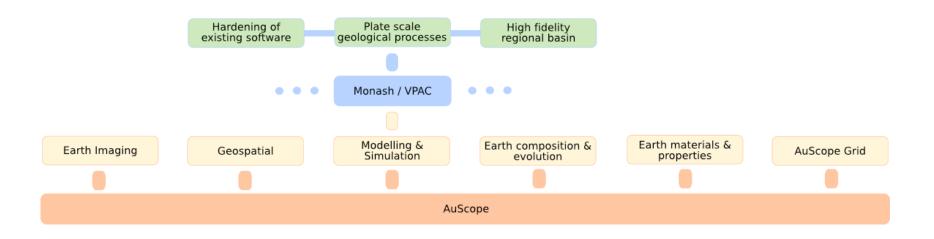


AuScope & Lagrangian-Eulerian consistent AMR

Steve Quenette Louis Moresi, Luke Hodkinson & Dave May

CIG - AMR Workshop October 2007

• About us & motivations


• Lagrangian - Eulerian consistent AMR

• Provide the capability of: "Structure and Evolution of the Australian Continent"

- With respect to us:
 - Software as infrastructure
 - Fabricating numerical and geophysics research

Steve Quenette, Head of CSD

Examples of supporting research

Existing: Underworld

- Aspect: geophysics
 - Isolated toolbox of rheologies and workflow revolving about Stokes flow
 - Long-term geodynamics large deformation
- Target models:
 - Mantle, slab, basin, plumes, lithospheric, ...
- Targeted numerics:
 - *FEM*
 - material point history (PIC)
 - Multigrid

Bleeding-edge: Mayhem

Dave May - dave.mayhem23@gmail.com

- Aspect: numerics
 - Research into AMR techniques optimised for Stokes and FEM with material point methods (Lagrangian-Eulerian consistent AMR)
- Origin: isolated research code
 - Serial
 - Not applied to involved geophysical problem
- Objective:
 - Consolidate into framework
 - plugin into existing phenomena models

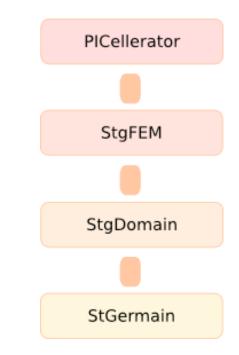
• We're interested in an environment where:

- Numerical schemes & physics can change with minimal impact on existing phenomena models
 - Hardware proofing (bandwidth, memory models)
 - Enabling multiphysics
 - Enabling scaling
- Our solution:
 - StGermain
 - Aspect oriented
 - "Composition" of phenomena models by isolated numerics and physics
 - Enables layered frameworks & expectation alignment

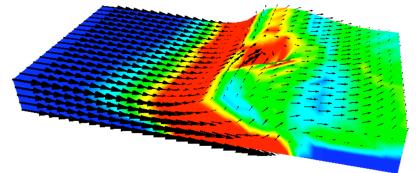
Scientist User • Spans C & XML uses tool developed by... Application Modeller Developer uses physics developed by... **Computational Physicist** uses solvers developed by... Frameworks Computational Mathematician **Developers** uses infrastructure developed by... **Computer Scientist** <struct name="components" mergeType="merge"> <struct name="mantleShape"> aram name= <param name="startX"> minX </param</pre> <param name="startY"> 0.0 </param> <param name="startZ"> minZ </param</pre> </struct> <struct name="mantleShape2"> <param name="Type">Union</param> <list name="shapes"> <param>mantleShape</param> <nparam>weakZoneShape</npa

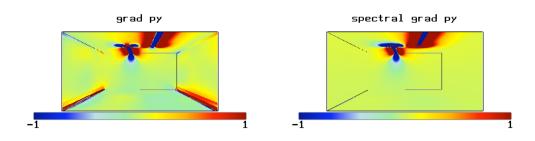
- Abstraction of concepts at all levels
 - CP: MoresiMulhous
 - CM: Field
 - CS: Component

Interchangability



🕋 🐼 The bain: distributed mem parallel


- Domain & Discretisation
 - Meshing
 - Structured 1 to 3d decomposition
 - Unstructured less mature
 - Incidence graph technique
 - Render out to flat arrays (Fortran like FEM)
 - Particles
 - Complicated to optimise
 - FEM
 - Abstract out fields (bundles)
 - (have had versions with optimal numbering)
- Summary
 - Expensive to develop.
 - Years of use.
 - Its all book keeping!

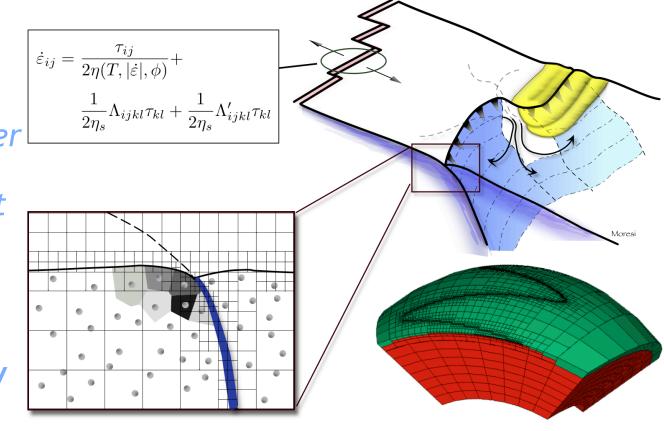


Existing: GALE

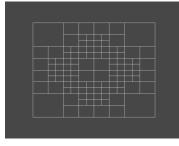
- GALE solves the Stokes and heat transport equations with a large selection of viscous and plastic rheologies.
- Target models:
 - orogenesis, rifting, and subduction, ...
- Targeted numerics:
 - Underworld (FEM,PIC) + free surface + ...

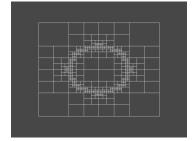
Bleeding-edge: MADDs

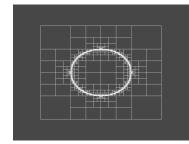
- Explore how magma dynamics interacts with mantle convection and/or long-term tectonics
- Target models:
 - *mor*, ...
- Targeted numerics:
 - Present thinking... Mixed
 FEM(PIC)-FV, >= quadratic


Ok, ok, but what about AMR?

- Either at the scale of:
 - Rifting & subduction
 - Graven
- Embedded within a greater lithospheric & mantle context
- Material point vs mesh density at a given point


- 1. Distributed memory parallel meshing infrastructure
 - Mixed tree & flat array based system —
- 2. AMR aware FEM book-keeping
 - Refinement models
- 3. AMR aware PIC
 - Global Voronoi


4. AMR aware Multigrid, levelsets, ...



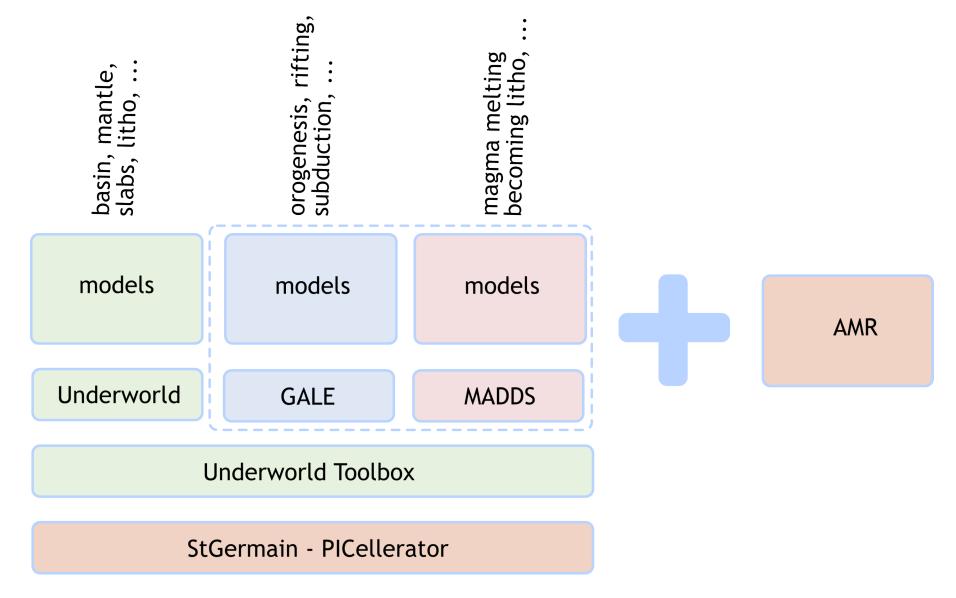
• Implemented the distributed memory parallel meshing infrastructure

• C example...

int newCells[4]; AdjTopology* topo; AdjSet* coords;

```
topo = AdjTopology_New();
newCells[0] = AdjTopology_MakeQuad( topo );
AdjTopology_RefineQuad( topo, newCells[0], newCells );
AdjTopology_RefineQuad( topo, newCells[0], newCells );
```

• From an API that looks like...


int MakeVertex(void* self); void KillVertex(void* self, int id); int Lift(void* self, int dim, int nSubCells, int* subCells); void Unlift(void* self, int dim, int id); int Join(void* self, int dim, int leftID, int rightID);

void RefineHexa(void* self, int cell, int *newCells); void RefineQuad(void* self, int cell, int *newCells); void RefineEdge(void* self, int cell, int *newCells);

void Update(void* self);

