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Parallel octree-based dynamic adaptive mesh refinement
Adaptive mesh refinement

Figure: Adaptively refined mesh

AMR essential for
resolving physical
phenomena that vary
over a wide range of
scales

we estimate a factor of
∼ 102 − 103 savings in
the number of dofs for
our application
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Parallel octree-based dynamic adaptive mesh refinement
Parallel implementation

Proc 2

Octree partitioned among processors

Underlying mesh operations parallelized according to the
octree partitioning

A phantom item to avoid moving of the above tree - if you’ve
something to say here, say it!
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Dynamic mesh adaptation

For time-dependent
problems the mesh
needs to be adapted
dynamically

Mesh adaptation
needs to run
simultaneously with
application

⇒ Problem: Mesh and application data need to be redistributed
among processors ⇒ dynamic load balancing
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Our scope
We are interested in

adaptive mesh refinement/coarsening for finite elements that
scales to large (i.e., > 1K) numbers of processors

an end-to-end approach, i.e., all components (meshing, solver,
analysis and visualization) run in parallel and tightly coupled
on the same machine

very large applications in geosciences
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Weak and strong scaling
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Scalings
Results for Rhea: weak scalings for advection-diffusion equation with adaptive mesh
refinement/coarsening on up to 2000 processors: efficiency per time step
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Adaptive FEM based on parallel octrees
start with initial mesh
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Adaptive FEM based on parallel octrees
estimate error for each element
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Adaptive FEM based on parallel octrees
2 to 1 balance refine

P0 P1 P2
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Adaptive FEM based on parallel octrees
initial partitioning

P0 P1 P2



Adaptive FEM based on parallel octrees
load balanced partitioning
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Adaptive FEM based on parallel octrees
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Adaptive FEM based on parallel octrees
P2 portion of the tree
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Adaptive FEM based on parallel octrees
addressing an octant

00 01 10 11

01

10

Level 0

Level 1

Level 2

Level 3

concat bit-patterns

110110

pad zeros

11011000

append the level

11011000011



Adaptive FEM based on parallel octrees
addressing an octant

get the coordinate (12,10)

use binary (0000,0000)

interleave the bits
1100 1010

11011000

append the level

11011000011 0 1 2 3 4 5 6 7 8 9 10111213141516
0
1
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7
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11
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Driving application: Mantle convection

Figure: Taken from US Geological
Survey https://www.usgs.com

main control on thermal
and geological evolution

central for understanding

plate tectonics
volcanism
dynamics of the solid
earth
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Resolution down to ∼ 1km
needed to resolve fine
structures

⇒ ∼ 1012 elements on
uniform grid

⇒ ∼ 109 elements on
adaptive grid
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Driving application: Mantle convection
Nondimensional model for mantle convection

∂T

∂t
+ u · ∇T −∇2T − γ = 0, (AD)

∇ ·
[
η(T )

(
∇u+∇>u

)]
−∇p+ RaTer = 0, (S1)

∇ · u = 0. (S2)

Variables:

T . . . temperature

u. . . velocity

p . . . pressure

Parameters:

Ra∼ 106 − 109. . . Rayleigh
number

γ. . . heat production rate

η(T ) ∼= ηo exp(1− EoT )
. . . viscosity

er. . . radial direction
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Driving application: Mantle convection
Discretization and Solution

Trilinear FEM for temperature, velocity and pressure (the
framework allows the use of higher-order FEM)

Conforming approximation is enforced by algebraic elimination
of hanging nodes

Solver operates only on anchored nodes

FEM stabilization:

Streamline Upwind/Petrov Galerkin (SUPG) for
advection-diffusion system
Pressure stabilization for Stokes equation

AMG-preconditioned MINRES for the solution of the Stokes
equation

α-timestepping for advection-diffusion equation (does not
require system solves)
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Driving application: Mantle convection
From the cube to spherical geometry

embed mantle into octree
box

refine near the boundary

intial approach: use a
fictitous domain method to
enforce boundary conditions
(via penalties or Lagrange
multipliers)

explore immersed finite
element method



Driving application: Mantle convection
Percentage of wall clock time for Rhea components
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Driving application: Mantle convection
Results for Rhea: weak scalings for advection-diffusion equation with adaptive mesh
refinement/coarsening on up to 2000 processors: efficiency per time step
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Future work
We intend to . . .

develop a scalable Stokes solver to attack the full mantle
convection problem

make our earth round (i.e., extend to spherical geometry)

optimize and test the approach for O(105) processors

long term: inverse problem (iRhea)



Conclusions

All AMR compents (error estimation, coarsening, refinement,
balancing, repartitioning) consume less than 8% of total run
time on up to 2000 processors

efficiency can only improve with (implicit, nonlinear) Stokes
solver

Parallel efficiency drops from 83.3% on 2 procs to 75.4% on
2000 procs

Parallel adaptive mesh refinement/coarsening for FEM that
scales up to thousands of processors is possible!

In principle, higher-order elements and irregular boundaries are
possible


