CIG and Marine Seismology*

- Brief overview of current and future efforts
- A (brief) wish list
- Some illustrative examples
- What we could contribute

Overview of Current and Future Efforts

- Crustal Imaging:
 - Imaging strongly heterogeneous, 3-D, anisotropic structures (with crude travel time methods).
 - Using seismic waveform data to constrain physical properties, e.g., Moho transition zone thickness, melt sills at crustal and mantle depths.
 - Waveform Inversion (others are doing this)
- Mantle Imaging
 - Imaging weakly heterogeneous, anisotropic structures (with crude travel time methods).
 - Geodynamic tomography: Testing seismic data (P and S delay times, shear wave splits) and other data (bathymetry, gravity) against predictions of geodynamic models. In the future, integration with predictions of composition from melting models.

Brief Wish List

- Your data!
 - In an agreed upon structure with agreed upon metrics (e.g., what exactly is an S delay time?)
- Ability to forward/inverse model:
 - 3-D, anisotropic ray tracing for first and secondary arrivals, including realistic relief and internal interfaces.
 - Synthetic seismograms, including effects of seafloor bathymetry and 3-D structures (e.g., melt sills, interfaces)
 - An efficient means of calculating sensitivity kernels for use in crustal and mantle scale delay time tomography
- Quantitative integration of geodynamics and seismology
 - Ability to efficiently map from flow to anisotropy and heterogeneity.

S_{fast} and S_{slow} delay times

- There is a difference between splitting delay times and polarized delays measured by an array!
- Should be considered when measuring and reporting delay times.
- Also should report frequency for sensitiviy kernels.

Wanted: An efficient/easy estimate of travel time sensitivity kernels for 3-D structures (mantle and crustal phases)

Geodynamic Tomography

Total delay ≈ heterogeneity + anisotropy

a)

Example of Current Generation Experiments: 64 OBSs, 5000-10,000 source positions

