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Say, there is a hypothetical
regional fault (fault motion
on the plane shown above)
that is continuously
creeping. We have CGPS
data every 20 km or so,
irregularly. Our time-
dependent inversion

- results for such fault
EE— L motion are on the left.
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Preview

Observatory Array Design
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In the background, you see creeping thrust motion @ a given time




Preview
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Dynamical Su=f+ Of « Errors in
Equations forcing
Geodynamic state
Data Errors in

d=Lu+ € «— data

Data functionals

We have uncertainties and errors in
physics, forcing, parameters, medium, nonlinearity, and
data
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a) General Concepts

Worked on

Inverse problems for time-dependent, non-linear processes in
active tectonics using “data assimilation” methods

Active
tectonics
simulator
~E Friday Harbor (SC02)
E | GPS data for active tectonics
E i From Meghan Miller’s @ University
Zs of Central Washington webpage
Data g 7 P
-3AN FEB MAR
2002




a) General Concepts

GeoFEST

POST-SEISMIC SURFACE MOVEMENTS FOLLOWING
THE LANDERS, 1992 EARTHQUAKE

ERS-1 interferometric map, 27 Sep 92 - 23 Jan 96

After slip, or
visco-elastic
relaxation ?

Aftershock
M=5.1, 4 Dec 92

Modeled i

rebound
caused

response .

Fault creep

——— G. Peltzer, JPL, 1997
56cm

Above: Figures from

Jet Propulsion Labo
California Institute of Technology B s




a) General Concepts

Motivation

Left: Proposed Data
Coverage by
Earthscope

Right: Geographical Survey
Institute (GSI), Japan - 1,224
GPS control points for real
time crustal motions.

Start of dense coverage and observatory-style monitoring




a) General Concepts

Inversion for forcing
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GPS (Global Positioning System) data in and around the Tibet.
India “forcing” into Eurasia. Figure from Peter Molnar’s @ UC
Boulder webpage.
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b) Equations
Variational Data Assimilation

/ Forcing

Dynamical Su=f+ Of « Errors in
Equations forcing
Geodynamic state
Data Errors in
d — Lu —I_ € < data

Data functionals
Minimize the penalty functional

Ju] =(d—Lu)*Wy(d — Lu) + (Su—f{)"W;(Su - f)
Wag=Cy ! Wy=0Cp ' Inverses of error covariances

Maximum likelihood estimate of u for a Gaussian
error processes




b) Equations
Variational Data Assimilation

Errors in Errors in
data forcing

Minimize the penalty functional

j[u] = (d — Lu)*Wd(d — Lu) + (Su — f)*Wf(SU. — f)

1 B .
Wa=Cyq" W;=C;' Inverses of error covariances

Note: The physics is embedded in the
penalty functional




b) Variational Data Assimilation/ Inverse Framework
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We provide the model, its tangent linear, and the adjoint
IOM provides the framework for the inverse/ optimatization

problem



b) Equations

Euler-Lagrange (E-L) Equations
Necessary conditions for a minimum j

Backward: STL*)\ — L*Wd(d — Lu)
Forward : Su="1 + Wf)\

* = adjoint of the

ST [, = tangent linear ST L tangent linear

Uses representer approach



Kdu/dt B*D\ﬁ(a) =

Snffness Elastic constants

da/dt D(Bdu/dt — 3(c)| =0

Stress tensor Visco-plastic strain

b) Equations
Forward Equations
Forward Model Equations (S)
Nodal dlsplacement Forcing
/
I f
)



b) Equations
Tangent Linear Equations

Tangent Linear Equations ( Sy)

Linearize viscous
/ rheology (if needed)

Kdu/dt — B*Df3 o = f

do/dt — D[Bdu/dt — (3 o

N

Errors in stress equation



b) Equations «
Adjoint Equations (S-py. ")

Mapping: )\, €E<— Uu,0
Kd\/dt — B*D = du/dt
de/dt — 3 D[Bd\/dt — €] = o

Adjoint is required for gradient of penalty
functional and for representer calculation u

sed to minimize j

J] =(d—Lu)*"Wy(d — Lu) + (Su—£)*W;(Su —f)

Broad class of geological problems: Same formulation
and software



b) Equations
Adjoint Based Modeling - Rational

Inputs cost function
" model
e — -
b L d

b_J_ ‘ —
bﬂ-ﬂ*_._ ad]{::-lvnt — e
O =pr | L )
0b

sensitivities Left: From MIT Climate Modeling Initiative

- Sensitivity of small number of output parameters
with respect large number of input variables

Errors, sensitivity, variational - extremely powerful tool




b) Equations
Adjoint Based Modeling - Rational
KNMI/ ESA Forecast SCIA assimilated lotal ozone

2 Sep 2004
120 UTG

Left: Ozone layer thickness
is predicted using adjoint models.
From KNMI/ ESA

Right: Paths of hurricanes are
predicted using adjoint models,
Sensitivity to errors tweaks the
initial conditions, and are

used for forecasting.
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shic cifects associated with the Mo
locked zone are substantially modifying a
quasiperiodic signal.

The 1989 M7.1 Loma Pricta earthquake
(2) occurred to the immediate northwest of
region I. The slip-rate history of this region

Distance northwest (km)

10 0 0 10
Depth (km) Distance (km)

Distance northwest (km)

c) Active Tectonics Motivation

Initial application: Aseismic slip/
silent earthquakes

Left: Analysis of earthquake and creepmeter data along
San Andreas Fault. From Nadeau and McEvilly, Science,
9 January 2004.

1988 1992 1996
Year

Slip rate (cm/yr)

1988 1992 1996
Year

Right: GPS data from Guerrero, Mexico.
From Vladimir Kostoglodov’'s @ UNAM, Mexico webpage
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d) Experiments

0

x (km)

-100

Right: Typical GeoFEST (similar to GPS data)
viscoelastic response to an impulse

forcing, say a single earthquake. Vertical
motion on surface in meters

Experiment setup
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Left: GeoFEST Model - Three layer
Earth, viscoelastic, 100-20 km
long blind fault. Finite element
with 1000s of nodes and elements
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aseismic slips are forced

differently..........
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d) Experiments

Forcing an aseismic fault
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Estimate aseismic fault slip spatially and temporarily
from GPS/ creepmeter/ earthquake data
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Each split node can have an
unique and different movement history



d) Experiments

Creating forcing

Selecting split nodes for motion spatially
and temporally

\,

Fault Plane

-100 = I

-8 2 slip nodes
selecied slip nodes

4] 5 10 15 20

km




d) Experiments

Creating “truth” models

Selecting split nodes for motion spatially
and temporally
1. Uniform, complete ramp-like Fault Plane

forcing (simplest experiment) j

2. Forcing in a 10
limited region

3. Migratory slip

km

4. Forcing in a
nonlinear medium

5. Ultra fast forcing
- foreshocks, after slip

-5 slip nodes
«  gelecied slip nodes

0 5 0 15 a0

6. Forcing from Different Plane
km



d) Experiments

Listening

Observatory Array Design

;\
g Earth Surface

In the background, you see creeping thrust motion @ a given time




d) Experiments

Creating arrays

Observatory Array Design

Numbers =
Continuous
GPS

- Coverage

X (km) \
Earth Surface




d) Experiments

Presenting results

1. Uniform, complete ramp-like
forcing (simplest experiment)

2. Forcing in a
limited region

km

Selecting split nodes for motion spatially
and temporally

Fault Plane

12f

10

-8 slip nodes
«  gelecied slip nodes

0 5 0 15 a0

km



d) Experiments

Perfect
Data

Displacement (mm)

Simplest experiment: No noise

Comparison of ground response - data and
computed from IOM at selected CGPS stations

04l

dxans) ® dvns]

0.8 L_ b

aantde®|

04

aand&®
0L

axinddr®

0 02 04 0 02 04
time [yr] time [yr]

Add Noise Later: Factor of standard deviation
More noise in Z-component



Comparison of ground response - data and
d) Experiments computed from IOM at selected CGPS stations
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Solid Line = Computed, + = Inversion through IOM




d) Experiments

Results
at

fault
plane

- Ah !
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d) Experiments

Results

at
fault
plane
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d) Experiments
Forcing in
a limited
region

Depth
controversy

km

Selecting split nodes for motion spatially
and temporally

Fault Plane

2 slip nodes
selecied slip nodes
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@ ~18days ~55days ~91days ~146days ~164days
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d) Experiments strike

Fault ship

Results
at the Fault Plane
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Above: Truth
Left: Inversion

What is the spatial
dislocation? We
assumed we knew
the fault plane but
need not

Displacement (cm)
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Midnight oil

® Request to CIG (Computational

nfrastructure for Geodynamics) to
dopt.

Shake the technique really hard -
oise, more sparse data, errors, etc

Full mojo of adjoint

Publish

Now and then. (Left) Market Street, San Francisco, today, in a split compasite photograph and (right) an
18 April 1906 as fire beganto consume the Call Building (in center of phato). The building's steel frame was
apparently undamaged by the earthquake, and it remains in use today. Note the debris from collapsed
masanry buildings further up Market Street. [1906 photo by W. ). Steet, courtesy Banaoft Library, Univ. of
(afifornia, Berkeley. Rephatography by M. Klett with M. Lungren (8)]

Above: From William Ellsworth, Science,
14 April, 2006.



