Probabilistic seismic hazard in the San Francisco Bay area based on physical models

Fred Pollitz and David Schwartz, USGS Menlo Park

- SFBR stress evolution with prescribed earthquake history in an interacting 10-fault system
- Future rupture probabilities using the time-predictable model
- SFBR stress evolution with simulated seismicity
- Fault system behavior using 30000-yr simulated seismicity

Stress evolution using prescribed earthquake history

Bay Area Earthquake History

Regional viscoelastic structure is well constrained by the GPS velocity field (Pollitz and Nyst, 2004)

Visccoelastic model yields good fit to regional GPS velocity field

Present GPS Velocity Field

Perturbations

Viscoelastic cycle parameters

- Recurrence interval T
- Slip {u} of past repeating earthquakes
- Date t₀ of last earthquake (prehistoric ruptures)

Failure stress

- Stress threshold $\sigma_{\rm f}$ applicable to future event

Future rupture probabilities based on:

Perturbation of controlling parameters of a deterministic viscoelastic-cycle model

• Time-predictable model: Entire fault will fail when a representative fault patch returns to same state of stress (+perturbation) that it had just before the previous event

Monte Carlo simulation

Monte Carlo simulation

• On given fault patch, estimate distribution of future rupture times t, subject to 1000 realizations of perturbations of T, {u}, t₀ (for every event) and σ_f (for failure stress on the patch)

• Enforce net slip rate condition

• t > 2006 to derive conditional probability curves

• No interaction of future ruptures with one another

Conclusions

- Probability density functions depend on rheology
- 30-year rupture probabilities are: 45-75%
 30-35%
 30-50%
 Southern Hayward Fault Rodgers Creek Fault Northern Calaveras Fault
- Future single-segment rupture probabilities are generally greater than estimated by WGCEP02
- No single model should be used to assess to time-dependent rupture probabilities. We suggest that several models, including the present one, be used in a comprehensive PSHA methodology, as was done by WGCEP02

SFBR stress evolution using simulated seismicity: Viscoelastic Earthquake Simulator

Fault interaction

Viscoelastic Greens
functions =

 $= 1.5 \times 10^7$

Survey of Seismicity Simulators

	Dieterich &Richards- Dinger	Rundle et al. (2006)	Ward (2000)	Lapusta &Rice (2002)	Duan &Oglesby (2005)	Pollitz
static stress transfer	-	~	<	>	~	-
viscoelastic stress transfer	X	x	x	X	X	~
3D faults	-	X	X	X	-	1
layered elasticity	X	X	X	X	X	1
dynamic rupture physics	X	X	x	*	~	X
rate/state friction	-	~	X	1	1	X
dipping faults	X	X	X	X	1	1
multiple faults	1	1	~	X	X	-

Initial stress

Tectonic Loading

System is loaded by backslip imposed on a thin elastic plate. This is a consequence of:

- Zero long-term strength below the base of the elastic plate
- Summation of viscoelastic relaxation from an infinite series of past events (on a given fault) assumed to have occurred with a definite mean recurrence interval

Stress history on a single fault patch

Dynamic overshoot parameter: $D = (\sigma_s - \sigma_a)/(\sigma_s - \sigma_d)$

Stress functions

- Average stress
- Standard deviation of stress

• Configurational entropy

$$\begin{split} AS(t) &= \frac{1}{N} \sum_{i=1}^{N} \tau_i(t) \\ SD(t) &= \sqrt{\frac{1}{N} \sum_{i=1}^{N} [\tau_i(t) - AS(t)]^2} \end{split}$$

$$\mathrm{CE}(\mathrm{t}) = -\int \mathrm{p}[\mathrm{s}(\mathrm{t})] \ln\{\mathrm{p}[\mathrm{s}(\mathrm{t})]\} \,\mathrm{ds}$$

Seismicity functions

- Interevent-time histograms
- Magnitude-frequency statistics
- Foreshock-mainshock statistics
- Conditional rupture probability

N+S Hayward Fault: Stress history from 30000-year seismicity simulations

Weibull distribution

N+S Hayward Fault

Rodgers Creek Fault

N Calaveras Fault

San Andreas Fault

Foreshock-mainshock statistics

13% probability of M>6.5 mainshock following a moderate event within 14 years

Conditional rupture probability

Conditional rupture probability

Foreshock-mainshock statistics

Goldfinger et al. (2008)

Conclusions

- Viscoelastic earthquake simulator is feasible
- Fault system behavior is sensitive to simple parameters
- Fault interaction and viscoelasticity
 - --> One-fault models or purely elastic models will not capture likely range of complexity