
PyLith

Brad Aagaard, Charles Williams, Matthew Knepley
Sue Kientz and Leif Strand

June 23, 2008



Outline

• Introduction to PyLith

• Motivation & development objective
• What does PyLith do?

• PyLith Design

• Architecture and programming languages
• Development strategy

• Features

• Current release
• Planned releases

• Benchmark results

• Tutorial
1



Motivation for Developing PyLith

• Available modeling codes

• rarely solve the problem you want to solve
• are often poorly documented
• may not work correctly

• Current research demands larger, more complex simulations

• Want to avoid multiple, incompatible versions of the same code

2



PyLith

What is it good for?

• Quasi-static crustal deformation

• Interseismic deformation
• Post-seismic deformation
• Volcano deformation

• Dynamic rupture and wave propagation

• Kinematic (prescribed) earthquake ruptures
• Strong ground motion modeling

3



Features in PyLith 1.2

• Spatial dimensions: 1-D, 2-D, or 3-D

• Time integration schemes

• Implicit time stepping for quasi-static problems
• Explicit time stepping for dynamic problems

• Bulk constitutive models

• Elastic model (1-D, 2-D, and 3-D)
• Linear and Generalized Maxwell viscoelastic models (3-D)

• Boundary and interface conditions

• Dirichlet (prescribed displacement and velocity) boundary conditions
• Neumann (traction) boundary conditions
• Absorbing boundary conditions
• Kinematic (prescribed slip) fault interfaces w/multiple ruptures
• Gravitational body forces

4



Features in PyLith 1.2 (cont.)

• Importing meshes

• LaGriT: GMV/Pset
• CUBIT: Exodus II
• ASCII: PyLith mesh ASCII format (intended for toy problems only)

• Output: VTK files

• Solution over volume
• Solution over surface boundary
• State variables (e.g., stress and strain) for each material
• Fault information (e.g., slip and tractions)

5



PyLith Design Objective

Want a code developed for and by the community

• Modular

• Users can swap modules to run the problem of interest

• Scalable

• Code runs on one to a thousand processors efficiently

• Extensible

• Expert users can add functionality to solve their problem without
polluting main code

6



PyLith

Overview of workflow for typical research problem

7



PyLith Design: Focus on Geodynamics

Leverage packages developed by computational scientists

MPI

External package

boost

PyLith

spatialdataFIATSievePyrenemesis

PETSc numpy Proj.4 Pyrexembed

PyrexBLAS/LAPACK

CIG package

8



PyLith Design: Code Architecture

Flexible and modular with good performance

• Top-level code written in Python

• Expressive, high-level,, object-oriented language
• Dynamic typing allows adding additional modules at runtime
• Convenient scripting

• Low-level code written in C++

• Compiled (fast execution), object oriented language

• Bindings to glue Python & C++ together

• Pyrex/pyrexembed generate C code for calling C++ from Python

9



PyLith Design

Tests, tests, and more tests (>700 in all)

• Create tests for nearly every function during development

• Remove most bugs during initial implementation
• Isolate and expose bugs at origin

• Create new tests to expose bugs reported

• Prevent bugs from reoccurring

• Rerun tests whenever code is changed

• Allows optimization of performance with quality control
• Code continually improves

10



Example of Automated Building and Testing

Test written to expose bug, buildbot shows tests fail

11



Automated Building and Testing

Bug is fixed, buildbot shows tests pass

12



PyLith 1.x: Planned Releases

First add features present in Tecton and EqSim

• PyLith 1.3: anticipate release in late summer 2008

• Initial stress state for constitutive models
• Adaptive time stepping

• PyLith 1.4: anticipate release in Dec 2008

• Fault constitutive behavior
• Nonlinear bulk constitutive models

• PyLith 1.5: anticipate release in Jun 2009

• Time dependent boundary conditions
• Large deformations and finite strain

• PyLith 1.6: Automation of 4-D Green’s functions

• PyLith 1.7: Coupling of quasi-static and dynamic simulations
13



Implementation: Finite-Element Data Structures

Use Sieve for storage and manipulating mesh information

• PyLith makes only a few MPI calls

• Data structures are independent of basis functions and reference
cells

• Same code for many cell shapes and types
• Physics implementation limits code, not data structures

• Sieve routines force adhering to finite-element formulation

• Do not have access to underlying storage
• Manipulations must be done using Sieve interface
• Only valid finite-element manipulation is allowed

14



Implementation: Fault Interfaces

Use cohesive cells to control fault behavior

Original Mesh Mesh with Cohesive Cell

0

Exploded view of meshes

4

5

6622

31

0

3 7 7

4620

571 31 3 5

420

1 3 3 5

422

15



Kinematic (prescribed) slip earthquake ruptures

Use Lagrange multipliers to specify slip

• System without cohesive cells

A~u = ~b

• System with cohesive cells

(
A CT

C 0

)(
~u
~L

)
=

(
~b
~D

)

• System with cohesive cells & conditioning

(
A aCT

C 0

)(
~u
1
a
~L

)
=

(
~b
~D

)

16



Implementing Fault Slip with Lagrange multipliers

• Advantages

• Fault implementation is local to cohesive cell
• Solution includes forces generating slip (Lagrange multipliers)
• Retains block structure of matrix (same number of DOF per vertex)
• Offsets in mesh mimic slip on natural faults

• Disadvantages

• Conditioned matrix is non-symmetric
• Mixes displacements and forces in solution

17



Benchmarking PyLith

Elastic solution for strike-slip benchmark

18



Tet4 500m Mesh: Local Error

Error largest around edges of fault

19



Hex8 500m Mesh: Local Error

Error concentrated around change in slip gradient

20



Strike-Slip Benchmark: Performance Summary

Hex8 cells outperform tet4 cells

21



Running PyLith

Ingredients

• Simulation parameters

• Finite-element mesh

• Mesh exported from LaGriT
• Mesh exported from CUBIT
• Mesh constructed by hand (PyLith mesh ASCII format)

• Spatial databases for boundary and fault conditions

• Simple ASCII files specify spatial variation of parameters
• Independent of discretization scheme and size

22



Useful Tips/Tricks

• Command line arguments

• --help
• --help-components
• --help-properties
• --petsc.start in debugger (run in xterm)
• --nodes=N (to run on N processors on local machine)

• PyLith User Manual

• CIG Short-Term Tectonics mailing list

• cig-short@geodynamics.org

• CIG bug tracking system

• http://www.geodynamics.org/roundup

23



PyLith is a Community Code

Success of code depends on community participation

• End-users (anyone who uses the code)

• Help define and prioritize features that should be added
• Report bugs/problems and suggest improvements

• Expert users

• Help test alpha versions of releases
• Run benchmarks and report results
• Contribute meshing and visualization examples to documentation
• Add features following template (e.g., constitutive models)

• Developer

• Define development strategy
• Implement new features and tests
• Write documentation

24



Example: Slip on a Vertical Strike-Slip Fault

examples/3d/hex8

25



Workflow for Example

1. Generate finite-element mesh using CUBIT (hex8 cells)

2. Create .cfg file with simulation parameters

3. Create spatial database files with parameters for boundary conditions
and faults

4. Run PyLith

5. Visualize results with ParaView

26


	PyLith
	Outline
	Motivation for Developing PyLith
	PyLith
	Features in PyLith 1.2
	Features in PyLith 1.2 (cont.)
	PyLith Design Objective
	PyLith
	PyLith Design: Focus on Geodynamics
	PyLith Design: Code Architecture
	PyLith Design
	Example of Automated Building and Testing
	Automated Building and Testing
	PyLith 1.x: Planned Releases
	Implementation: Finite-Element Data Structures
	Implementation: Fault Interfaces
	Kinematic (prescribed) slip earthquake ruptures
	Implementing Fault Slip with Lagrange multipliers
	Benchmarking PyLith
	Tet4 500m Mesh: Local Error
	Hex8 500m Mesh: Local Error
	Strike-Slip Benchmark: Performance Summary
	Running PyLith
	Useful Tips/Tricks
	PyLith is a Community Code
	Example: Slip on a Vertical Strike-Slip Fault
	Workflow for Example

