Shaking up Faults: Insights from the Lab on Earthquake Triggering Heather Savage

Earth and Planetary Sciences Department UC, Santa Cruz

PENN STATE ROCK MECHANICS

LABORATORY

Examples of Seismic Wave **Triggering:** Landers Earthquake 1992

- M 7.3
- First example of remotely triggered seismicity
- Strongly uni-directional

Denali Earthquake 2002

- M 7.9
- Triggered earthquakes along propagation path over thousands of kilometers

Gomberg et al. 2004

Tremor Triggered by Love Wave Shear Stress, Denali

Rubinstein et al. 2007

Tidal Oscillations

Cochran et al., 2004

Tidal Oscillations and the West Antarctic Ice Sheet

Tidal Oscillations and the West Antarctic Ice Sheet

What Controls Triggering Thresholds?

Friction change (e.g. weakening) requires finite slip & time

Earthquake Triggering

- Seismological evidence for both amplitude and frequency triggering thresholds
- Thresholds vary between geographic locations -- does tectonic setting matter?
- Do frictional properties of the fault affect triggering potential?

Fault Zone Architecture

Courtesy of Nick Hayman

Interplate faults

Intraplate faults

Marone and Scholz 1988

Fault Stability and Architecture: Laboratory Studies

Axial Displacement (mm)

Faults stabilize with increasing displacement, Wong and Zhao 1990

Research Question

- Oscillating stresses trigger earthquakes
- Gouge stabilizes fault slip
- Does gouge have stabilizing effects during oscillating stress (e.g. seismic waves)?

Testable Parameters in the Laboratory

- Properties of the seismic wave:
 - Amplitude
 - Frequency
 - Duration
- Properties of the fault:
 - Fault zone architecture (presence or absence of gouge zone, thickness of gouge zone)
 - Fault state (timing in the interseismic cycle)

Laboratory Setup

Laboratory Setup

- 5 MPa normal stress
- Tectonics stress: background shear loading rate of 5 μ m/s

0.5 MPa

Courtesy of Anthony 2004 Shear Anthony 2004 Stress Stress Time

Modified from Scholz 2003

Fault Zone Materials

Anthony and Marone 2005

Laboratory Setup

- 5 MPa normal stress
- Tectonics stress: background shear loading rate of 5 μm/s

t_{be} = Time Between Events t_{trans} = Time of Transient: Timing of Oscillation Relative to Last Failure

Time of Transient (s)

Triggering Definition:

- 1. The failure occurs during the transient
- 2. The inter-event time of the earliest triggered event must be two standard deviations from the average recurrence

Amplitude Dependence

Duration Effects

Phase Lag of Failure

Phase Lag at Failure

Modified from Scholz 2003

Critical Slip Distance on Bare Surfaces: Asperity Contact

Critical Slip Distance in Granular Layers

Grain-Grain Contact

and creep

Force Chains

Implications: What type of fault is more susceptible to triggering?

Implications: Triggering Thresholds

Effects of acoustic waves on stick-slip friction

Johnson, Savage, Knuth, Gomberg & Marone, Nature, 2008

MMMMMM

Effects of acoustic waves on stick–slip

Johnson et al., Nature, 2008

Conclusions

- Triggering thresholds vary as a function of fault type - possibly as a function of D_c
- Increasing gouge thickness makes a fault more susceptible to triggering because of increased creep in the interseismic period
- Triggering threshold is most likely a function of amplitude, frequency in the highfrequency regime

Modeling Microfriction

- Incorporating critical slip distance into failure thresholds for faults will allow for testing delayed failure behavior
- Varying critical slip distance lengths is important to model fault maturity
- Some indication that the dependence of strength on velocity will also be important