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Kaj Johnson and Isabelle Ryder

Hearn, 2002

Lower-crustal shear zone in Madagaskar
Bürgmann and Dresen, 2008 Ann. Rev. 
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Understanding of the rheology of Earth’s lower crust and
upper mantle and of deep fault zones is fundamental to
studies of
– plate & continental tectonics
– earthquake cycle mechanics
– fault interaction & earthquake hazard

Goal: Illuminate Deformation Processes
and Rheology at Depth

Stress Rheology Strain
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What gives in the lower crust?
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Bürgmann & Dresen, 2008 Ann. Rev.

It depends on…
(1) Tectonic setting
(2) Lithology, grain size, temperature, and fluids
(3) Strain weakening and localization processes

What gives in the lower crust?
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From the Laboratory …
• Advantages: Conditions

and materials are well
known and the experiment
can be directly observed

• Disadvantages: Rock and
fault mechanics
experiments are run at
scales and conditions far
from natural environment

Chris Marone’s rock mechanics lab 

Texas A&M rock mechanics lab GFZ Gas deformation apparatus
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Hreinsdottir et al., 2003, 
GRL; 2006, JGR

Nov. 2002-Jun. 2003

… to the Natural Laboratory
• A large earthquake (or other

loading event) initiates a
lithosphere-scale rock
mechanics experiment that
allows us to probe the
rheology at depth

– Establish geometry and boundary
and initial conditions (coseismic
slip) of experiment

– Take postseismic deformation
measurements (GPS, InSAR, …)

– Use models to resolve
deformation processes and
determine relevant rock or fault
constitutive properties

• Examples: Mojave Desert, Denali,
Tibet, and NW India Freed et al., 2006, JGR



7 CIG June 24, 2008

Mojave Desert Earthquakes
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• We adopt coseismic slip models and layered elastic structure of
Simons et al. 2002 and Fialko, 2004

• All models are driven by stress changes from both earthquakes

Coseismic Source

Freed et al., 2007 GRL
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1999-2006
Transients

North Components

Freed et al., 2007 GRL
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ε = A σn  e-Q/RT
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Hyndman, GSA Today 2005

Mojave Dessert Tastes Like Crème
Brûlée: Strong Crust - Hot & Wet

Mantle in (former) Backarc

Jackson, 2002

• What gives in the crust?
– Modest poroelastic rebound together

with crustal afterslip and/or flow
contribute (see Fialko, 2004; Perfettini
& Avouac, 2007; Freed et al., 2004)
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Freed et al., 2006, JGR

Mw 7.9 Denali Earthquake

Hreinsdottir et al., 2006, JGR
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Mantle Flow and Crustal Shear

Freed et al., 2006 JGR

• FEM models indicate
upper mantle relaxation,
as well as lower crustal
flow or slip

Nov. 2002 - Oct. 2004
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Localized Lower Crustal Shear

Eberhart-Phillips, 2003 AGU
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Rheology of Lower Crustal Shear?

Freed et al., 2006 EPSL Johnson et al., 2008 GJI submitted
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Plate Boundaries: Weak Mantle - Strong Crust

Thatcher & Pollitz, GSA Today 2008

?
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Cratonic Shields: Strong Crust and Mantle

Milne et al., Science 2001

?

Kohlstedt, 2007 Treatise Geophys.
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Weak Crust in Tibet: Cheddar or Brie?Weak Crust in Tibet: Cheddar or Brie?

INDIA

TIBETAN PLATEAU

35-40 mm/yr

Cook & Royden, 2008 JGR

Meade, 2007
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Evidence for Mid/lower Crustal Flow

Shapiro et al. 2004:
mid/lower crustal
flow inferred from
seismic anisotropy

Unsworth et al. 2004: mid/lower crustal
flow inferred from high conductivity
measured by MT

Cook & Royden, 2008 JGR
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Four Large Earthquakes in 11 YearsFour Large Earthquakes in 11 Years

1. Manyi (1997)  M 7.6
2. Kokoxili (2001)  M 7.8
3. Yutian (2008)  M 7.2
4. Wenchuan (2008) M 7.8

1 23

4
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1997 1997 Manyi Manyi EarthquakeEarthquake

November 8 1997, M
7.6 left-lateral strike-
slip on 200 km long
rupture with up to 8
meters of slip
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Post-Manyi InterferogramsPost-Manyi Interferograms

Ryder et al., 2007 GJI
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Post-Manyi InSAR Post-Manyi InSAR Time SeriesTime Series

66 
days

307
days

726
days

time

44 days 99 days 113 days

84 days 168 days 186 days

606 days 726 days 778 days

Time series
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2001 2001 Kokoxili Kokoxili EarthquakeEarthquake

14 November
2001, M 7.8 left-
lateral, 400-km-
long rupture with
up to 8 m of slip

Lasserre et al. 2005
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Postseismic InterferogramsPostseismic Interferograms

Track 405: 23 Dec 2003 – 7 Dec 2004 Track 355: 11 Feb 2005 – 12 Jan 2007 

DESCENDING ASCENDING
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Descending and Ascending Orbit DataDescending and Ascending Orbit Data

East-west
component
of horizontal
displacement

Composite of
north-south
horizontal
and  vertical
components
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Manyi:   7 x 1018 Pa s

Kokoxili: 1 x 1019 Pa s

η1

η2

elastic

viscoelastic layer 1

viscoelastic layer 2
(half space)

h

fixed

VISCO1D 

UniformUniform  Viscosity in Mid- and Lower CrustViscosity in Mid- and Lower Crust

η1 = η2
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7x1018 Pa s

LOS (cm)

η1

η2

elastic

viscoelastic layer 1

viscoelastic layer 2
(half space)

h

fixed

VISCO1D 

Ryder et al., 2007 GJI
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Ongoing WorkOngoing Work

• More interferograms (ascending,
ALOS)

• Use GPS time series of early post-
Kokoxili deformation

• Dynamic afterslip modeling

• Finite element modeling to assess
effect of lateral heterogeneity (e.g.
crustal thickness, Qaidam basin)

• Investigate Yutian and Wenchuan
postseismic transients

Zhu & Helmberger (1998)
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2008 2008 Yutian Yutian and and Wenchuan Wenchuan EarthquakesEarthquakes
ALOS ALOS
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Future workFuture work

Dip-slip earth-
quakes probe the
deep rheology (of
Tibet) with more
unique patterns of
deformation

Afterslip Viscous flow
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Future workFuture work

Burchfiel et al., 2008 GSA
Today in press

Cook and Royden, 2008 JGR
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M 7.8  2001 Bhuj Earthquake: First Large
Intra-plate Event in Space Geodetic Era

Chandrasekhar et al., 2008 in prep. 
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Chandrasekhar et al., 2008 in prep. 
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Elastic Plate and Viscoelastic Asthenosphere

Viscosity Ratio (lower crust/ mantle)

M
a

n
tl
e

 V
is

co
s
it
y
  

(P
a
 s

)

4

6

18

70

120

170

2 yr.

10
 -1

10 0 10 1 10 2 10 3

10
 22

10
 21

10
 20

10
 19

10
 18

Viscosity Ratio (lower crust/ mantle)

M
a

n
tl
e

 V
is

co
s
it
y
  

(P
a
 s

)

6

10

48

166

266
6 yr.

10 -1 10 0 10 1 10
 2

10
 3

10
 22

10
 21

10
 20

10
 19

10
 18

• Mantle relaxation dominates

• Lower crust stronger than
mantle

• Afterslip and poroelastic
rebound not evident

Chandrasekhar et al., 2008 in prep. 
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RMS Misfit Plot Bestfit displacement Plot
Effective Viscosity Increases With Time
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Strong Crust, Surprisingly Weak Mantle

Kumar et al. 2007, Nature • Mantle under NW India is
weakened by Deccan plume

Kennett &  Widiyantoro, EPSL 1999
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Some Answers, More Opportunities
• Lithospheric strength and rheology strongly differ as a function of the

makeup, tectonic evolution, and environment of a region.
• In (former) backarc regions, the upper mantle is viscously weaker

than the lower crust owing to high temperatures and possibly the
addition of water.

• Mature fault zones are weak, and deformation along them is localized
to varying degrees throughout the crust. Strain weakening and
localization are ubiquitous at all scales.

Bürgmann and Dresen, 2008 Ann. Rev.
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Some Answers, More Opportunities
• Future postseismic studies should be focused on resolving mid- to

lower-crustal processes, and geophysical imaging tools need to be
sharpened to better illuminate the deep architecture of active faults.

• Postseismic studies need to consider deformation early and late in
the earthquake cycle.

• Transients in mechanical response due to abrupt or slow changes in
loading or strain need to be explored.

• More post-loading studies of all types are needed to better explore
the distribution of lithospheric rheology across the continents and
plate boundary zones.

Bürgmann and Dresen, 2008 Ann. Rev.


