

The Geodynamic World Builder in ASPECT

A solution for complex intitial conditions

July 24, 2020

1. What is the Geodynamic World Builder (GWB)?

- 1. What is the Geodynamic World Builder (GWB)?
- 2. How can you use the World Builder with ASPECT?

- 1. What is the Geodynamic World Builder (GWB)?
- 2. How can you use the World Builder with ASPECT?
- 3. How do you make a model with the World Builder?

- 1. What is the Geodynamic World Builder (GWB)?
- 2. How can you use the World Builder with ASPECT?
- 3. How do you make a model with the World Builder?
- 4. Where can you find more info about the World Builder?

- 1. What is the Geodynamic World Builder (GWB)?
- 2. How can you use the World Builder with ASPECT?
- 3. How do you make a model with the World Builder?
- 4. Where can you find more info about the World Builder?
- 5. What are the development plans for the World Builder? And how can you contribute?

What is the World Builder?

easy to make, good for simplified problems and benchmarks

easy to make, good for simplified problems and benchmarks

2. data driven models:

easy to load in data like an ASCII file, good for steady state models

easy to make, good for simplified problems and benchmarks

2. data driven models:

easy to load in data like an ASCII file, good for steady state models

3. complex synthetic models:

hard to make, good for evolution models starting in the past

easy to make, good for simplified problems and benchmarks

2. data driven models:

easy to load in data like an ASCII file, good for steady state models

3. complex synthetic models:

hard to make, good for evolution models starting in the past

The GWB is designed to make the last case a lot easier

Example: Initial conditions are hard

Example: Initial conditions are hard

subsection Compositional initial conditions set Model name = function

set Model name = functi subsection Function

set Variable names = x,z

set Function constants = pi=3.1415926536, px=800000.0, dept=660000.0, l=80000.0, dip=252, d=1000000.0, dwz=30000, dip=25, d=1000000.0, dwz=30000, dip=25, d=100000.0, dwz=30000, dip=25000, dip=2500

set Function expression = if(z>=depth|(z>=(depth-lcr2)&x<Px-lcr2*tan(0.5*(dip/180.0)*pi)|(z<x*tan(-(dip/180)*pi)+Px*tan((di</pre> p/180)*pi)+depth&z>=x*tan(-(dip/180)*pi)+Px*tan((dip/180)*pi)+depth-(lcr2/sin((dip/180.0)*pi)*tan((dip/180)*pi))&x>=Px-lcr2*tar (0.5*(dip/180.0)*pi)&z>=x*tan(0.5*pi-(dip/180)*pi)-(d*sin((dip/180)*pi)+(Px+d*cos((dip/180)*pi))/tan((dip/180)*pi)-depth))|(z>= depth-lcr2-r+r*cos((dip/180)*pi)&z<depth-lcr2&x>=Px-sin(0.5*(dip/180)*pi)*lcr2-0.5*r*sin((dip/180)*pi)/(sin(atan((r*sin((dip/ 0)*pi))/(r-r*cos((dip/180)*pi))))^2)&x<Px-sin(0.5*(dip/180)*pi)*lcr2-0.5*r*sin((dip/180)*pi)/(sin(atan((r*sin((dip/180)*pi))/(r /180)*pi))/(r-r*cos((dip/180)*pi))))^2)))^2+(z-(depth-lcr2-r))^2>=r^2)&z<x*tan(-(dip/180)*pi)+Px*tan((dip/180)*pi)+depth)|(z>=> *tan(-(dip/180)*pi)+Px*tan((dip/180)*pi)+depth&z<x*tan(-(dip/180)*pi)+Px*tan((dip/180)*pi)+depth+dwz/cos((dip/180.0)*pi)&z>=dep th-lc3cr)|(z>=x*tan(-(dip/180)*pi)+Px*tan((dip/180)*pi)+depth+dwz/cos((dip/180.0)*pi)&z>=depth-lc3cr)),0,1); if(z<depth&(z>=(de pth-lcr?)&x<Px[(z<x*tan(-(dip/180)*pi)+Px*tan((dip/180)*pi)+depth&z>=x*tan(-(dip/180)*pi)+Px*tan((dip/180)*pi)+depth-((lcr?)/s ((dip/180.0)*pi)*tan((dip/180)*pi))&x>=Px-lcr2*tan(0.5*(dip/180.0)*pi)&z>=x*tan(0.5*pi-(dip/180)*pi)-(d*sin((dip/180)*pi)+(Px+ d*cos((dip/180)*pi))/tan((dip/180)*pi)-depth))|(z>=depth-lcr2-r+r*cos((dip/180)*pi)&z<depth-lcr2&x>=Px-sin(0.5*(dip/180)*pi)*l 2-0.5*r*sin((dip/180)*pi)/(sin(atan((r*sin((dip/180)*pi))/(r-r*cos((dip/180)*pi))))^2)&x<Px-sin(0.5*(dip/180)*pi)*lcr2-0.5*r* in((dip/180)*pi)/(sin(atan((r*sin((dip/180)*pi))/(r-r*cos((dip/180)*pi))))>2)+r*sin((dip/180)*pi)&((x-(Px-sin(0.5*(dip/180)*pi *lcr2-0.5*r*sin((dip/180)*pi)/(sin(atan((r*sin((dip/180)*pi))/(r-r*cos((dip/180)*pi))))^2)))^2+(z-(depth-lcr2-r))^2>=r^2)&z<x*t an(-(dip/180)*pi)+Px*tan((dip/180)*pi)+depth)),1,0); if(z<depth&z>=x*tan(-(dip/180)*pi)+Px*tan((dip/180)*pi)+depth&z>=depth-lc3 cr,1,0); if(z>=depth,1,0) #C1:mantle;C2:slab;C3:overriding plate;C4:weakzoneslab end

- 1. not readable (even hard for developers)
- 2. not modifiable (even hard for developers)
- 3. not extendable (even hard for developers)
- 4. not portable/reproducible in other codes
- 5. not shareable (everyone reinventing the wheel)

- 1. not readable (even hard for developers)
- 2. not modifiable (even hard for developers)
- 3. not extendable (even hard for developers)
- 4. not portable/reproducible in other codes
- 5. not shareable (everyone reinventing the wheel)

The Geodynamic World Builder (GWB) hopes to solve these problems

Implementing a specific coding philosophy to solve the extendable, portable and shareable issues

Implementing a specific coding philosophy to solve the extendable, portable and shareable issues

to solve the readability and modifiable issues

- 1. A single text-based input file (Like ASPECT)
- 2. Code, language and platform independent
 - 2.1 supports Linux, OSX and Windows
 - 2.2 can interface with C++, C, Fortran and Python codes
- 3. Up-to-date user manual and code documentation
- 4. Safe to use in parallel codes
- 5. Readable and extensible code
- 6. Strict version numbering to ensure reproducible of results

- 1. Tectonic features can be parameterized by lines and area
- 2. These features implicitly define a volume
- 3. to which a model can be assigned describing
 - 3.1 temperature
 - 3.2 composition (a label for a material)
- 4. Parameterized by human readable JSON file.

How do I make the input file for the World Builder?

A simple example for making a subduction zone

Creating Lines and Areas

Creating Lines and Areas

Creating Lines and Areas

- 1. Fill the box with mantle material.
- 2. Fill Caribbean Oceanic plate.
- 3. Fill Atlantic Oceanic plate.
- 4. Fill subducting plate.

1. Fill the box with mantle material.

- 2. Fill Caribbean Oceanic plate.
- 3. Fill Atlantic Oceanic plate.
- 4. Fill subducting plate.

1. Fill the box with mantle material.

2. Fill Caribbean Oceanic plate.

3. Fill Atlantic Oceanic plate.

4. Fill subducting plate.

Fill the box with mantle material. Fill Caribbean Oceanic plate. Fill Atlantic Oceanic plate. Fill subducting plate.

4. Fill subducting plate.

- 1. Fill the box with mantle material.
- 2. Fill Caribbean Oceanic plate.
- 3. Fill Atlantic Oceanic plate.
- 4. Fill subducting plate.

We can use these concepts to build this with the world builder


```
2
       "version" "0.3".
       "coordinate system":{"model":"cartesian"},
       "features":
 6
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
```

{"model": "mantle layer", "name": "upper mantle", "min depth": 100e3, "max depth": 660e3,

"coordinates":[[0,0],[0,1000e3],[2000e3,1000e3],[2000e3,0]], "composition models":[{"model":"uniform", "compositions":[4]}],

"version": "0.3".

"features":

"coordinate system":{"model":"cartesian"},

```
2
 4
 6
8
9
10
11
12
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
```

```
"version": "0.3".
"coordinate system": {"model": "cartesian"}.
"features":
  {"model": "mantle layer", "name": "upper mantle", "min depth": 100e3, "max depth": 660e3,
     "coordinates": [[0,0], [0,1000e3], [2000e3, 1000e3], [2000e3, 0]],
     "composition models": [{"model": "uniform", "compositions": [4]}]},
  {"model": "oceanic plate", "name": "Overriding plate", "max depth": 100e3,
     "coordinates": [[0,0],[0,1000e3],[1500e3,1000e3],[1600e3,250e3],[1500e3,0]],
     "temperature models": [{"model": "plate model", "max depth": 100e3, "spreading velocity": 0.01,
                             "ridge coordinates":[[400e3,-1],[-100e3,2000e3]]}],
     "composition models":[{"model":"uniform", "compositions":[0], "max depth":100e3}]},
  ["model": "oceanic plate", "name": "Atlantic Plate", "max depth": 100e3.
     "coordinates":[[2000e3,0],[2000e3,1000e3],[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
     "temperature models": [{ "model": "linear", "max depth": 100e3 }],
     "composition models": [{"model": "uniform", "compositions": [3], "max depth": 50e3},
                           {"model"; "uniform", "compositions"; [1], "min depth"; 50e3 }]},
```

```
2
 4
 6
 8
9
10
11
12
14
15
16
17
18
19
20
21
22
24
25
26
27
28
29
30
31
32
33
```

```
"version": "0.3".
"coordinate system": { "model": "cartesian" }.
"features":
  {"model": "mantle layer", "name": "upper mantle", "min depth": 100e3, "max depth": 660e3,
     "coordinates": [[0,0], [0,1000e3], [2000e3, 1000e3], [2000e3, 0]],
     "composition models": [{"model": "uniform", "compositions": [4]}]},
  {"model": "oceanic plate", "name": "Overriding plate", "max depth": 100e3,
     "coordinates": [[0,0],[0,1000e3],[1500e3,1000e3],[1600e3,250e3],[1500e3,0]],
     "temperature models": [{"model": "plate model", "max depth": 100e3, "spreading velocity": 0.01,
                             "ridge coordinates":[[400e3,-1],[-100e3,2000e3]]}],
     "composition models":[{"model":"uniform", "compositions":[0], "max depth":100e3}]],
  ["model": "oceanic plate", "name": "Atlantic Plate", "max depth": 100e3.
     "coordinates": [[2000e3,0],[2000e3,1000e3],[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
     "temperature models": [{ "model": "linear", "max depth": 100e3 }],
     "composition models": [{"model": "uniform", "compositions": [3], "max depth": 50e3},
                           {"model"; "uniform", "compositions"; [1], "min depth"; 50e3 }]},
  {"model": "subducting plate", "name": "Slab",
     "coordinates": [[1500e3,1000e3], [1600e3,350e3], [1500e3,0]],
     "dip point":[0,0],
     "segments": [{"length": 300e3, "thickness": [100e3], "angle": [0,60],
     "temperature models": [{"model": "plate model", "density": 3300, "plate velocity": 0.02 }],
     "composition models": [{"model": "uniform", "compositions": [2], "max distance slab top": 100e3]]}
```

```
2
 4
 6
8
9
10
11
12
14
15
16
17
18
19
20
21
22
24
25
26
27
28
29
30
31
32
33
```

```
"version": "0.3".
"coordinate system": { "model": "cartesian" }.
"features":
  {"model": "mantle layer", "name": "upper mantle", "min depth": 100e3, "max depth": 660e3,
     "coordinates": [[0,0], [0,1000e3], [2000e3, 1000e3], [2000e3, 0]],
     "composition models": [{"model": "uniform", "compositions": [4]}]},
  {"model": "oceanic plate", "name": "Overriding plate", "max depth": 100e3,
     "coordinates": [[0,0],[0,1000e3],[1500e3,1000e3],[1600e3,250e3],[1500e3,0]],
     "temperature models": [{"model": "plate model", "max depth": 100e3, "spreading velocity": 0.01,
                             "ridge coordinates":[[400e3,-1],[-100e3,2000e3]]}],
     "composition models":[{"model":"uniform", "compositions":[0], "max depth":100e3}]],
  "model": "oceanic plate", "name": "Atlantic Plate", "max depth": 100e3.
     "coordinates": [[2000e3,0],[2000e3,1000e3],[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
     "temperature models": [{ "model": "linear", "max depth": 100e3 }],
     "composition models": [{"model": "uniform", "compositions": [3], "max depth": 50e3},
                           {"model"; "uniform", "compositions"; [1], "min depth"; 50e3 }]},
  {"model": "subducting plate", "name": "Slab",
     "coordinates": [[1500e3,1000e3], [1600e3,350e3], [1500e3,0]],
     "dip point":[0,0],
     "segments": [{"length": 300e3, "thickness": [100e3], "angle": [0,60],
                 {"length":500e3, "thickness":[100e3], "angle":[60,20]}],
     "temperature models": [{"model": "plate model", "density": 3300, "plate velocity": 0.02 }],
```

"composition models":[{"model":"uniform", "compositions":[2], "max distance slab top":100e3}]}

{"model": "mantle layer", "name": "upper mantle", "min depth": 100e3, "max depth": 660e3,

```
2
 4
 6
8
9
10
11
12
14
15
16
17
18
19
20
21
22
24
25
26
27
28
29
30
31
32
33
```

"version": "0.3".

"dip point":[0,0],

"features":

"coordinate system": {"model": "cartesian"}.

```
"coordinates": [[0,0], [0,1000e3], [2000e3, 1000e3], [2000e3, 0]],
  "composition models": [{"model": "uniform", "compositions": [4]}]},
{"model": "oceanic plate", "name": "Overriding plate", "max depth": 100e3,
  "coordinates": [[0,0],[0,1000e3],[1500e3,1000e3],[1600e3,250e3],[1500e3,0]],
  "temperature models": [{"model": "plate model", "max depth": 100e3, "spreading velocity": 0.01,
                           "ridge coordinates":[[400e3,-1],[-100e3,2000e3]]}],
   "composition models":[{"model":"uniform", "compositions":[0], "max depth":100e3}]],
"model": "oceanic plate", "name": "Atlantic Plate", "max depth": 100e3.
  "coordinates": [[2000e3,0],[2000e3,1000e3],[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
  "temperature models": [{ "model": "linear", "max depth": 100e3 }],
  "composition models": [{"model": "uniform", "compositions": [3], "max depth": 50e3},
                        {"model"; "uniform", "compositions"; [1], "min depth"; 50e3 }]},
{"model": "subducting plate", "name": "Slab",
  "coordinates": [[1500e3,1000e3], [1600e3,350e3], [1500e3,0]],
  "segments": [{"length": 300e3, "thickness": [100e3], "angle": [0,60],
               "composition models":
                  {"model": "uniform", "compositions": [3], "max distance slab top": 50e3}.
                  {"model": "uniform", "compositions": [2], "min distance slab top": 50e3 }]},
               {"length":500e3, "thickness":[100e3], "angle":[60,20]}],
  "temperature models": [{"model": "plate model", "density": 3300, "plate velocity": 0.02 }],
  "composition models": [{"model": "uniform", "compositions": [2], "max distance slab top": 100e3]]}
```

Resulting model, this is what we are going to build today!

Resulting model, this is what we are going to build today!

This is only a very simple example. There are many more possibilities! 17

A model of the Carribean for example!

And here are model results with with ASPECT!

(GWB input file for this model at the end of the presentation)

Building the subduction example with World Builder in ASPECT

What does ASPECT need?

- 1. location of the world builder file
- 2. to be set for use as an initial temperature/composition model

What does ASPECT need?

- 1. location of the world builder file
- 2. to be set for use as an initial temperature/composition model

```
ASPECT listing 1: Activating the world builder in ASPECT
  1
     set World builder file = world/builder/file/location.wb
  2
  3
     subsection Initial temperature model
 4
         set Model name = world builder
  5
     end
  7
     subsection Initial composition model
 8
         set Model name = world builder
  9
     end
```

A minimal World Builder file example

- 1. You need to provide the world builder version: 0.3
- 2. You **need** to define a features object.

A minimal World Builder file example

- 1. You **need** to provide the world builder version: 0.3
- 2. You need to define a features object.

GWB listing 1: A minimal World Builder file example: RFM-1-minimal.wb		
1 2 3 4	{	"version":"0.3", "features":[]

1. Make sure you are in the directory session-5:

cd ~/aspect-tutorials/2020-tectonics-modeling-tutorial/session-5

- 2. You can now run ../aspect-release RFM-1-minimal.prm
- 3. Load state in Paraview:

```
pv_view_full_c1_T.pvsm , use
```

search files under specified directory and set the directory to

RFM-1-minimal

A minimal World Builder file example visualized

You can now run ../aspect-release RFM-1-minimal.prm

Paraview Load state: pv_view_full_c1_T.pvsm , use

search files under specified directory and set the directory to

RFM-1-minimal

Optional parameter: coordinate system

- 1. You **can** provide the coordinate system.
- 2. The cartesian coordinate is the default

Optional parameter: coordinate system

- 1. You **can** provide the coordinate system.
- 2. The cartesian coordinate is the default


```
1 {
2 "version":"0.3",
3 "coordinate system":{"model":"cartesian"},
4 "features":[]
5 }
```

Adding a generic feature

- 1. Code in **red** boxes will give you errors when used literally!
- 2. The code below doesn't work because there is no feature called "feature model 1", or a temperature model called "temp. model 1", etc.

GWB listing 4: Adding a generic feature

```
"version" "0.3",
 3
      "features":
 4
 5
6
          "model": "feature model 1",
 7
          "name" "Eurasia".
8
          "coordinates" :[[0,0],[0,100e3],[200e3,100e3],[200e3,0]],
9
          "temperature models": [{"model": "temp. model 1"}],
10
          "composition models": [{"model": "comp. model 1"}]
11
13
```

Optional exercise: Run the code above and see if you can understand the error message.

Adding two generic features

```
GWB listing 5: Adding two generic features
```

```
"version" "0.3",
      "features":
 4
 5
 6
          "model": "feature model 1",
 7
          "name" "Eurasia"
8
          "coordinates" :[[0,0],[0,100e3 ],[200e3,100e3 ],[200e3 ,0]],
9
          "temperature models": [{"model": "temp. model 1"}],
10
          "composition models": [{"model": "comp. model 1"}]
11
12
          "model": "feature model 2",
14
          "name" "Africa"
15
          "coordinates":[[0,0],[0,-100e3],[-200e3,-100e3],[-200e3,0]],
16
          "generic feature option 1":1000.0,
17
          "generic feature option 2" "value 2".
18
          "temperature models": [{"model": "temp. model 2", "temp. par.": 100e3}],
19
          "composition models": [{"model": "comp. model 2", "comp. par.":1}]
21
```

1. Area features:

- Continental plate
- Oceanic plate
- Mantle layer

2. Line features:

- Subducting plate
- Fault

1. Area features:

- Continental plate
- Oceanic plate
- Mantle layer

2. Line features:

- Subducting plate
- Fault

With **area features** the coordinates parameter describes an area. With **line features** the coordinates parameter describes a line

Adding a oceanic plate feature

- 1. This add a oceanic plate feature
- 2. But no temperature or compositional models have been added!

GWB listing 6: Adding a oceanic plate feature

```
1 {
2 "version":"0.3",
3 "coordinate system":{"model":"cartesian"},
4 "features":
5 [
6
7
8
9
10
10
11
12
2 ]
13 }
```

Adding a oceanic plate feature

- 1. This add a oceanic plate feature
- 2. But no temperature or compositional models have been added!

GWB listing 7: Adding a oceanic plate feature

```
1 {
2     "version":"0.3",
3     "coordinate system":{"model":"cartesian"},
4     "features":
5     [
6        {
7          "model":"oceanic plate", "name":"Overriding Plate",
8          "coordinates":[[0,0],[0,1000e3],[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
9
10
11     }
12   ]
13 }
```

Adding temperature and composition models

Here we add temperature and compositional models to the continental plate feature.

GWB listing 8: RFM-2-overriding_plate.wb

```
1 {
2 "version":"0.3",
3 "coordinate system":{"model":"cartesian"},
4 "features":
5 [
6 {
7 "model":"oceanic plate", "name":"Overriding Plate",
8 "coordinates":[[0,0],[0,1000e3],[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
9 "temperature models":[{"model":"uniform", "temperature":293}],
10 "composition models":[{"model":"uniform", "compositions":[0]}]
11 }
12 ]
13 }
```

You can now run ../aspect-release RFM-2-overriding_plate.prm Load state: pv_view_full_c1_T.pvsm , search files under specified directory and set the directory to RFM-2-overriding_plate

An oceanic plate

You can now run ../aspect-release RFM-2-overriding_plate.prm

Load state in Paraview: pv_view_full_c1_T.pvsm , use

search files under specified directory and set the directory to

RFM-2-overriding_plate

33

Adding maximum depths

GWB listing 9: RFM-2-overriding_plate.wb

```
"version" "0.3",
      "coordinate system":{"model":"cartesian"},
 4
      "features":
6
 7
           "model" "oceanic plate", "name" "Overriding Plate",
8
           "coordinates":[[0,0],[0,1000e3],[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
9
           "temperature models".
10
             {"model":"uniform", "temperature":293
11
12
13
           "composition models": [{"model": "uniform", "compositions": [0]}]
14
15
16
```

Adding maximum depths

GWB listing 10: RFM-3-overriding_plate_depths.wb

```
"version" "0.3",
      "coordinate system": {"model": "cartesian"},
 4
      "features":
6
 7
           "model": "oceanic plate", "name": "Overriding Plate", "max depth": 100e3,
8
           "coordinates":[[0,0],[0,1000e3],[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
9
           "temperature models":
10
             {"model":"uniform", "temperature":293, "max depth":50e3}
13
           "composition models": [{"model": "uniform", "compositions": [0]}]
14
16
```

Run: ../aspect-release RFM-3-overriding_plate_depths.prm View: pv_view_full_c1_T.pvsm , dir: RFM-3-overriding_plate_depths

A continental plate

Run: ../aspect-release RFM-3-overriding_plate_depths.prm

View: pv_view_full_c1_T.pvsm , dir: RFM-3-overriding_plate_temp

36

More interesting oceanic plate temperature

```
GWB listing 11: RFM-3-overriding_plate_depths.wb
```

```
1
      "version" "0.3",
      "coordinate system": {"model": "cartesian"},
 4
      "features":
6
 7
           "model": "oceanic plate", "name": "Overriding Plate", "max depth": 100e3,
8
           "coordinates":[[0,0],[0,1000e3],[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
9
           "temperature models".
10
             {"model":"uniform", "temperature":293, "max depth":50e3}
11
13
           "composition models":[{"model":"uniform", "compositions":[0]}]
14
16
17
```

More interesting oceanic plate temperature

GWB listing 12: RFM-4-overriding_plate_temp.wb

```
"version" "0.3",
      "coordinate system": {"model": "cartesian"},
 4
      "features":
6
 7
           "model": "oceanic plate", "name": "Overriding Plate", "max depth": 100e3,
8
           "coordinates":[[0,0],[0,1000e3],[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
9
           "temperature models":
             {"model":"plate model", "max depth":100e3, "spreading velocity":0.01,
11
             "ridge coordinates":[[400e3,-1],[-100e3,2000e3]]}
13
           "composition models":[{"model":"uniform", "compositions":[0]}]
14
17
```

Run:../aspect-release RFM-4-overriding_plate_temp.prmView:pv_view_full_c1_T.pvsmdir:RFM-4-overriding_plate_temp

A continental plate

Run: ../aspect-release RFM-4-overriding_plate_temp.prm

View: pv_view_full_c1_T.pvsm , dir: RFM-4-overriding_plate_temp

39

Adding the Atlantic

GWB listing 13: RFM-4-overriding_plate_temp.wb

```
1
      "version" "0.3",
      "coordinate system": {"model": "cartesian"},
 4
      "features":
 6
        {"model":"oceanic plate", "name":"Overriding Plate", "max depth":100e3,
 7
         "coordinates":[[0,0],[0,1000e3],[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
8
         "temperature models":
9
           {"model":"plate model", "max depth":100e3, "spreading velocity":0.01,
10
            "ridge coordinates":[[400e3,-1],[-100e3,2000e3]]}],
         "composition models": [{"model": "uniform", "compositions": [0]}]
11
12
        }
13
14
16
17
18
19
20
```

Adding the Atlantic

GWB listing 14: incomplete RFM-5-atlantic.wb

```
1
      "version" "0.3",
      "coordinate system": {"model": "cartesian"},
 4
      "features":
 5
 6
        {"model":"oceanic plate", "name":"Overriding Plate", "max depth":100e3,
 7
         "coordinates":[[0,0],[0,1000e3],[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
 8
         "temperature models":
 9
           {"model":"plate model", "max depth":100e3, "spreading velocity":0.01,
10
            "ridge coordinates":[[400e3,-1],[-100e3,2000e3]]}],
11
         "composition models": [{"model": "uniform", "compositions": [0]}]
12
13
         {"model": "oceanic plate", "name": "Atlantic Plate", "max depth": 100e3,
14
         "coordinates":[[200e4,0],[200e4,100e4],[150e4,100e4],[160e4,35e4],[150e4,0]],
15
         "temperature models": [{"model": "linear", "max depth": 100e3}],
16
         "composition models":
17
18
                                                                        1}
19
20
```

Adding the Atlantic

GWB listing 15: RFM-5-atlantic.wb

```
1
      "version" "0.3",
      "coordinate system": {"model": "cartesian"},
 4
      "features":
 5
 6
        {"model":"oceanic plate", "name":"Overriding Plate", "max depth":100e3,
 7
         "coordinates":[[0,0],[0,1000e3],[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
8
         "temperature models":
9
           {"model":"plate model", "max depth":100e3, "spreading velocity":0.01,
10
            "ridge coordinates":[[400e3,-1],[-100e3,2000e3]]}],
11
         "composition models": [{"model": "uniform", "compositions": [0]}]
13
        {"model": "oceanic plate", "name": "Atlantic Plate", "max depth": 100e3,
         "coordinates":[[200e4,0],[200e4,100e4],[150e4,100e4],[160e4,35e4],[150e4,0]],
14
15
         "temperature models": [{"model": "linear", "max depth": 100e3}],
         "composition models":
16
17
           {"model":"uniform", "compositions": [3], "max depth": 50e3},
18
           {"model":"uniform", "compositions":[1], "min depth":50e3}]]
19
20
```

Run: ../aspect-release RFM-5-atlantic.prm

Add the Atlantic

Run: ../aspect-release RFM-5-atlantic.prm

View: pv_view_mixed_c1_T.pvsm , dir: RFM-5-atlantic

Optional adding a mantle layer

GWB listing 16: RFM-5-atlantic.wb

```
"version" "0.3".
3
      "coordinate system": {"model": "cartesian"},
4
      "features":
5
6
 7
8
9
        {"model":"oceanic plate", "name":"Overriding Plate", "max depth":100e3,
10
         "coordinates":[[0,0],[0,1000e3],[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
11
         "temperature models":
12
          {"model":"plate model", "max depth":100e3, "spreading velocity":0.01,
13
            "ridge coordinates":[[400e3,-1],[-100e3,2000e3]]}],
         "composition models": [{"model": "uniform", "compositions": [0]}]},
14
15
        {"model": "oceanic plate", "name": "Atlantic Plate", "max depth": 100e3,
16
         "coordinates":[[200e4,0],[200e4,100e4],[150e4,100e4],[160e4,35e4],[150e4,0]],
         "temperature models": [{"model": "linear", "max depth": 100e3}],
17
         "composition models":
18
19
           {"model":"uniform", "compositions": [3], "max depth": 50e3},
          {"model":"uniform", "compositions":[1], "min depth":50e3}]]
21
```

Optional adding a mantle layer

GWB listing 17: RFM-6-mantle.wb

```
"version" "0.3".
 3
      "coordinate system": {"model": "cartesian"},
 4
      "features".
 5
 6
        {"model":"mantle layer", "name":"upper mantle", "min depth":100e3,
 7
           "max depth":660e3, "coordinates":[[0,0],[0,1000e3],[2000e3,1000e3],[2000e3,0]],
8
           "composition models": [{"model": "uniform", "compositions": [4]}]},
9
        {"model":"oceanic plate", "name":"Overriding Plate", "max depth":100e3,
10
         "coordinates":[[0,0],[0,1000e3],[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
11
         "temperature models":
12
           {"model":"plate model", "max depth":100e3, "spreading velocity":0.01,
13
            "ridge coordinates":[[400e3,-1],[-100e3,2000e3]]}],
         "composition models": [{"model": "uniform", "compositions": [0]}]},
14
        {"model":"oceanic plate", "name":"Atlantic Plate", "max depth":100e3,
15
16
         "coordinates":[[200e4,0],[200e4,100e4],[150e4,100e4],[160e4,35e4],[150e4,0]],
17
         "temperature models": [{"model": "linear", "max depth": 100e3}],
18
         "composition models":
19
           {"model":"uniform", "compositions": [3], "max depth": 50e3},
           {"model":"uniform", "compositions":[1], "min depth":50e3}]]
21
22
```

Break

Finishing the model: Subducting plates

Adding a basic subducting plate

A subducting plate requires:

- 1. coordinates -> The trench of the subduction zone
- 2. a dip point -> The direction in which the plate is dipping
- 3. segments -> downwards parts of the plate

GWB listing 18: partial RFM-7-basic_subducting_plate.wb

```
2
      "version" "0.3",
3
      "coordinate system": {"model": "cartesian"},
4
      "features":
5
6
7
           "model" "subducting plate", "name" "Slab",
8
           "coordinates":[[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
9
           "dip point":[0,0],
10
           "segments"
11
            {"length":300e3, "thickness":[100e3], "angle":[60]}],
           "temperature models": [{"model": "uniform", "temperature": 293 }],
13
           "composition models":[{"model":"uniform", "compositions":[2]}]}
14
```

Adding a basic subducting plate

Run: ../aspect-release RFM-7-basic_subducting_plate.prm

View: pv_view_mixed_c1_T.pvsm , dir: RFM-7-basic_subducting_plate

Curving and adding temperature to the subducting plate

GWB listing 19: partial RFM-7-basic_subducting_plate.wb

```
"version" "0.3",
 3
      "coordinate system": {"model": "cartesian"},
 4
      "features":
5
6
 7
           "model" "subducting plate", "name" "Slab",
8
           "coordinates":[[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
9
           "dip point":[0,0],
10
          "segments"
            {"length":300e3, "thickness":[100e3], "angle":[60]}],
11
12
           "temperature models":
13
            {"model":"uniform", "temperature":293 }],
14
           "composition models": [{"model": "uniform", "compositions": [2]}]}
15
16
```
Curving and adding temperature to the subducting plate

GWB listing 20: partial RFM-8-curved_temp_subducting_plate.wb

```
"version" "0.3",
 3
      "coordinate system": {"model": "cartesian"},
4
      "features":
5
6
 7
           "model" "subducting plate", "name" "Slab",
8
           "coordinates":[[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
9
           "dip point":[0,0],
10
           "segments"
            {"length":300e3, "thickness":[100e3], "angle":[0,60]}],
11
12
           "temperature models":
13
            {"model":"plate model", "density":3300, "plate velocity":0.02}],
14
           "composition models": [{"model": "uniform", "compositions": [2]}]}
15
16
```

Run: ../aspect-release RFM-8-curved_temp_subducting_plate.prm

Adding a basic subducting plate

- Run: ../aspect-release RFM-8-curved_temp_subducting_plate.prm
- View: pv_view_mixed_c1_T.pvsm , dir: RFM-8-curved_temp_subducting_plate

Adding a segment to the subducting plate

GWB listing 21: partial RFM-8-curved_temp_subducting_plate.wb

```
"version" "0.3",
 3
      "coordinate system": {"model": "cartesian"},
4
      "features":
5
6
 7
           "model" "subducting plate", "name" "Slab",
8
           "coordinates":[[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
9
           "dip point":[0,0],
10
           "segments":
             {"length":300e3, "thickness":[100e3], "angle":[0,60]}
11
12
                                                                    |,
13
           "temperature models":
14
             {"model":"plate model", "density":3300, "plate velocity":0.02}],
15
           "composition models": [{"model": "uniform", "compositions": [2]}]}
16
```

Adding a segment to the subducting plate

GWB listing 22: partial RFM-9-segments_subducting_plate.wb

```
"version" "0.3".
 3
      "coordinate system": {"model": "cartesian"},
      "features":
4
 5
6
 7
           "model" "subducting plate", "name" "Slab",
8
           "coordinates":[[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
9
           "dip point":[0,0],
10
           "segments"
11
             {"length":300e3, "thickness":[100e3], "angle":[0,60]},
12
             {"length":500e3, "thickness":[100e3], "angle":[60,20]}],
13
           "temperature models":
14
             {"model":"plate model", "density":3300, "plate velocity":0.02}],
           "composition models": [{"model": "uniform", "compositions": [2]}]}
16
```

Run: ../aspect-release RFM-9-segments_subducting_plate.prm

Exercise: Turn the subduting plate in the other direction.

Adding a basic subducting plate

- Run: ../aspect-release RFM-9-segments_subducting_plate.prm
- View: pv_view_mixed_c1_T.pvsm , dir: RFM-9-segments_subducting_plate

Adding different models to segments

GWB listing 23: partial RFM-9-segments_subducting_plate.wb

```
"version" "0.3",
      "coordinate system": {"model": "cartesian"},
      "features":
4
 5
6
 7
           "model" "subducting plate", "name" "Slab",
8
           "coordinates":[[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
9
           "dip point":[0,0],
10
           "segments"
            {"length":300e3, "thickness":[100e3], "angle":[0,60]
11
12
13
14
                                                                                         },
15
             {"length":500e3, "thickness":[100e3], "angle":[60,20]}],
16
           "temperature models":
            {"model":"plate model", "density":3300, "plate velocity":0.02}],
17
           "composition models":[{"model":"uniform", "compositions":[2]}]}
18
19
```

Adding different models to segments

GWB listing 24: partial reference_model.wb

```
"version" "0.3",
      "coordinate system": {"model": "cartesian"},
 4
      "features":
 5
 6
 7
           "model" "subducting plate", "name" "Slab",
8
           "coordinates":[[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
 9
           "dip point":[0,0],
10
           "segments"
11
             {"length":300e3, "thickness":[100e3], "angle":[0,60],
12
              "composition models":
                {"model":"uniform", "compositions":[3], "max distance slab top":50e3},
14
                {"model":"uniform", "compositions":[2], "min distance slab top":50e3}]},
15
            {"length":500e3, "thickness":[100e3], "angle":[60,20]}],
16
           "temperature models":
17
            {"model":"plate model", "density":3300, "plate velocity":0.02}],
18
           "composition models": [{"model": "uniform", "compositions": [2]}]}
19
20
```

Run: ../aspect-release reference_model.prm . (Note: highres!)

This is the reference model I showed you!

Run:../aspect-release reference_model.prm(Highres: ~ 50M DOFs)View:pv_view_mixed_c1_T.pvsm, dir:reference_model

This is the reference model I showed you!

Run:../aspect-release reference_model.prm(Highres: ~ 50M DOFs)View:pv_view_mixed_c1_T.pvsm, dir:reference_model

Not quite yet: 2D models and more complicated slabs

Two more things to cover:

- How to make 2D models
- How to make slabs which differ along strike

Topics not covered today:

- Spherical geometries
- $\cdot\,$ How to deal with artifacts in the initial condition
- Interpolation of coordinates
- Global parameters vs local parameter
- How to read error messages

Not quite yet: 2D models and more complicated slabs

Two more things to cover:

- How to make 2D models
- How to make slabs which differ along strike

Topics not covered today:

- Spherical geometries
- \cdot How to deal with artifacts in the initial condition
- Interpolation of coordinates
- Global parameters vs local parameter
- How to read error messages

See the manual for more information on those topics or ask during discussion session.

2D models

2D models are a cross-section through 3D models

- 2D models are a cross-section through 3D models
- Therefore you need to define the coordinates of the cross-section
- You need to define the start (which is x = 0) and a second point along the cross-section (direction).

GWB listing 25: Partial RFM-11-2D.wb

```
1 {
2 "version":"0.3",
3 "coordinate system":{"model":"cartesian"},
4 "cross section":[[0,50e3],[100e3,-50e3]],
5 "features":
6 [
7 ...
8 ]
9 }
```

Run: ../aspect-release RFM-11-2D.prm

A 2D model in ASPECT build with the World Builder

A 2D model in ASPECT build with the World Builder

Changing slab properties between trench coordinates

A subducting plate can be divided in **segment** and **sections**, which each can have their own properties:

- 1. Segment are down dip
- 2. Sections are parts between the coordinates.
- 3. All **sections** need to have the same amount of **segments** (But their length may be zero)

Adding a new section to a slab

GWB listing 26: partial RFM-12-sections.wb

```
"model" "subducting plate", "name" "Slab",
       "coordinates":[[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
       "dip point":[0,0],
 4
       "segments":
 6
         {"length":300e3, "thickness":[100e3], "angle":[0,60],
 7
          "composition models":
8
            {"model":"uniform", "compositions":[3], "max distance slab top":50e3},
9
            {"model":"uniform", "compositions":[2], "min distance slab top":50e3}]]},
10
         {"length":500e3, "thickness":[100e3], "angle":[60,20]}],
11
12
13
14
15
16
17
       "temperature models":
18
         {"model":"plate model", "density":3300, "plate velocity":0.02}],
19
       "composition models": [{"model": "uniform", "compositions": [2]}]
20
```

Run: ../aspect-release RFM-12-sections.prm

Adding a new section to a slab

GWB listing 27: partial RFM-12-sections.wb

```
"model" "subducting plate", "name" "Slab",
       "coordinates":[[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
 4
       "dip point":[0,0],
       "segments":
 6
         {"length":300e3, "thickness":[100e3], "angle":[0,60],
 7
          "composition models":
8
            {"model":"uniform", "compositions":[3], "max distance slab top":50e3},
9
            {"model":"uniform", "compositions":[2], "min distance slab top":50e3}]]},
10
         {"length":500e3, "thickness":[100e3], "angle":[60,20]}],
11
       "sections":
12
         {"coordinate":0,
13
14
15
          "composition models": [{"model": "uniform", "compositions": [1]}]}
16
       ],
17
       "temperature models":
18
         {"model":"plate model", "density":3300, "plate velocity":0.02}],
19
       "composition models": [{"model": "uniform", "compositions": [2]}]
20
```

Run: ../aspect-release RFM-12-sections.prm

Adding a new section to a slab

GWB listing 28: partial RFM-12-sections.wb

```
"model" "subducting plate", "name" "Slab",
       "coordinates":[[1500e3,1000e3],[1600e3,350e3],[1500e3,0]],
 4
       "dip point":[0,0],
 5
       "segments":
 6
         {"length":300e3, "thickness":[100e3], "angle":[0,60],
 7
          "composition models":
8
            {"model":"uniform", "compositions":[3], "max distance slab top":50e3},
9
            {"model":"uniform", "compositions":[2], "min distance slab top":50e3}]]},
10
         {"length":500e3, "thickness":[100e3], "angle":[60,20]}],
11
       "sections":
12
         {"coordinate":0.
13
          "segments": [{"length": 300e3, "thickness": [100e3], "angle": [0,60]},
14
                     {"length":400e3, "thickness":[100e3,50e3], "angle":[60]}],
          "composition models":[{"model":"uniform", "compositions":[1]}]}
15
16
       ],
17
       "temperature models":
18
         {"model":"plate model", "density":3300, "plate velocity":0.02}],
19
       "composition models": [{"model": "uniform", "compositions": [2]}]
20
```

Sections in action

Run:../aspect-release RFM-12-sections.prm(Highres: ~ 50M DOFs)View:pv_view_mixed_c1_T.pvsmdir:RFM-12-sections

Sections in action (highres)

In closing

- \cdot Website: geodynamicworldbuilder.github.io
- \cdot Manual on the website
- Developer documentation: codedocs.xyz/GeodynamicWorldBuilder/WorldBuilder/
- Paper: doi.org/10.5194/se-10-1785-2019
- Questions, issues and contributions: github.com/GeodynamicWorldBuilder/WorldBuilder/

Examples:

- Lattice Prefered Orientation output -> Experimental interface done
- Improved coordinate interpolation -> proof of concept done
- Initial topography output -> several concept ideas, input needed
- Better JSON parser error messages -> several concept ideas
- $\cdot\,$ Allow the subducting plate to influence overriding plates -> todo

Examples:

- Lattice Prefered Orientation output -> Experimental interface done
- Improved coordinate interpolation -> proof of concept done
- Initial topography output -> several concept ideas, input needed
- Better JSON parser error messages -> several concept ideas
- Allow the subducting plate to influence overriding plates -> todo

See more development and ask your questions on https://github.com/GeodynamicWorldBuilder/issues

Contributions are also very welcome!

Bonus 1: The World Builder Paraview file creator

- 1. Go the the world builder folder in contrib
- 2. run $_{\rm cmake}$.
- 3. run $_{\rm make}$
- 4. cd bin
- $5. \ ./{\rm WorldBuilderVisualization \ wbfile.wb \ wb-gridfile.grid}$
- 6. look in the cookbook folder for examples

Bonus 2: Medium complexity case

Medium complexity case

Bonus 3: Carribbean model World Builder input file

Part 1

```
1
 2
       "version": "0.2".
3
       "potential mantle temperature":1500.
 4
       "thermal expansion coefficient": 2.0e-5.
5
       "maximum distance between coordinates":100000,
6
       "interpolation": "monotone spline".
 7
8
       "force surface temperature": true.
9
       "coordinate system": {"model": "cartesian"}.
10
       "features":
          "model" "oceanic plate", "name" "Caribbean plate",
11
12
           "coordinates":[[-1e3,0],[1700e3,0],[1700e3,650e3],[1686e3,750e3],[-1e3,750e3]],
           "temperature models": [{"model": "linear", "max depth": 100e3}],
14
           "composition models": [{ "model": "uniform", "compositions": [1], "max depth": 30e3 }]}.
15
16
          "model"; "oceanic plate", "name"; "Carribean weak zone",
           "coordinates":[[-1e3,1000e3],[-1e3,750e3],[1536e3,749e3],[1450e3,836e3],[1350e3,906e3],[1239e3
17
                  .958 e3],[1122 e3,989 e3],[1000 e3,1000 e3],[650 e3,1000 e3]],
           "temperature models": [{"model": "linear", "max depth": 100e3}],
18
           "composition models": [{"model": "uniform", "compositions": [2], "max depth": 30 e3}.
19
                                     {"model":"uniform", "compositions":[3], "min depth":30e3, "max depth"
20
                                            :100e3}]}.
21
22
          "model" "oceanic plate" "name" "NS American plate"
           "coordinates": [[1700e3,0], [1700e3,300e3], [1689e3,422e3], [1658e3,539e3], [1606e3,650e3], [1536e3
23
                  .749e3].[1450e3.836e3].[1350e3.906e3].[1239e3.958e3].[1122e3.989e3].[1000e3.1000e3].[700
                  e3.1000 e3].[-1e3.1000 e3].[-1e3.1501 e3].[2501 e3.1501 e3].[2501 e3.-501 e3].[-1e3.-501 e3].[-1
                  e3.011.
           "temperature models": [{"model": "linear", "max depth": 100e3}],
24
           "composition models":[{"model":"uniform", "compositions":[0], "max depth":30e3}]].
25
26
27
         "model": "mantle laver", "name": "660", "min depth": 660 e3.
28
           "coordinates":[[-1e3,-500e3],[-501e3,2500e3],[2501e3,2500e3], [2501e3,-501e3]],
29
           "composition models": [{"model": "uniform", "compositions": [4]]]}.
```

Part 2

```
"model": "subducting plate", "name": "Lesser Antilles slab",
          "coordinates": [[1700e3.0], [1700e3.300e3], [1689e3.422e3], [1658e3.539e3], [1606e3.650e3], [1536e3.749]
 2
                 e3],[1450e3,836e3],[1350e3,906e3],[1239e3,958e3],[1122e3,989e3],[1000e3,1000e3],[700e3
                 .1000e3]].
          "dip point": [-1, -1], "min depth": 0, "max depth": 660 e3,
 4
          "segments": [{"length":300e3, "thickness":[100e3], "angle":[0,55]},
                        {"length":375e3, "thickness":[100e3], "angle":[55]},
 6
                        {"length":225e3, "thickness":[100e3.75e3], "angle":[55.10]}
          "sections":
 8
             {"coordinate":11, "segments": [{"length":300e3, "thickness":[100e3], "angle":[0,55]},
 9
10
                                             {"length":375e3, "thickness":[100e3], "angle":[55]},
                                             {"length":50e3, "thickness":[100e3,75e3], "angle":[55,10]}]}
11
12
          "temperature models":
13
14
            ["model": "plate model", "density":3300, "plate velocity":0.0200, "thermal conductivity":2.5, "
                   thermal expansion coefficient":2e-5 }
15
          "composition models": [{"model": "uniform", "compositions": [0], "max distance slab top": 30 e3}, {"
16
                 model": "uniform", "compositions": [0,1,2,3,4,5,6], "fractions": [0,0,0,0,0,0,0], "min
                 distance slab top":30e3}]
17
18
19
         "model": "continental plate", "name": "South Weakzone",
          "coordinates": [[-1e3,0e3], [-1e3,-50e3], [2501e3,-50e3], [2501e3,0e3]],
20
          "temperature models": [{ "model": "linear", "max depth": 100 e3 }].
21
22
          "composition models":
            {"model": "uniform", "compositions": [2], "max depth": 30 e3}.
23
            {"model": "uniform", "compositions": [3], "min depth": 30e3, "max depth": 100e3 }]}
24
25
26
```