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Topics

Fluid dynamics approach to Geodynamical/Tectonic problems
— Viscous creeping flows (Stokes flows)

— Solving plastic problems using a viscous approach

Large displacement / Large Deformation Flows
— Arbitrary Lagrangian Eulerian formulation

— Importance of the upper free surface

— Surface Processes - Erosion and Sedimentation

Typical ALE model thermo-mechanical calculation

Some examples of model results
Future directions for two dimensional modeling

Progress on state of the art three dimensional modeling tools



Viscous Creeping Flows

Equilibrium Equation:
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Viscous Incompressible Flow:
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Stokes Equation:
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Rheologies

Non-Linear Viscous Rheology:
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Non-Linear (Frictional) Plastic Rheology
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Viscous-Elastic Flows

Compressible Visco-Elastic Flow
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The ALE Techniques: E and L Grids

E-velocity
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Finite element problem is solved on the E-grid

L-ptcles are located at the L-grid nodes and are injected within the E-elements
L-ptcles act as a moving ‘cloud’ to advect information on material type, strain,
temperature, etc.

This information is re-interpolated back on the E-elements.



E — Remeshing to Conform to Model Domain

Current model upper surface,
modified for erosion, sedimentation
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Current model lower surface, Column of
modified for isostasy original
E - grid

Finite element problem is solved on the E- grid.
The E — grid is stretched/contracted vertically to conform to the material domain.



Parametric Approach to:

Effects of fluid pressure variation on
strength of rock

Strain weakening of plastic and viscous
materials

Effects of melting on strength of rock
Surface process models



Simplified Rheological Stratification - 4

Effect of Pore Fluid Pressure

Pressure, P
Solid Pressure T ~Jpy=C+(P-PySind
¥ P
Let P;/P=A
Fluid Pressure J, =C + P(1-A)Sind
¥ P,
or, approximately
5 J, = C + PSin{,
P "\ P- P, - where
L8 (1 - L)Sind = Sing,
Depth Effective Pressure 0, = effective ¢

A =P;/ P = Hubbert-Rubey
fluid pressure ratio

P
S (e = effective ¢
7 modlﬁ_ed (approx)
S 0, ~ 20° N for fluid pressure.
5 ® \ Hydrostatic fluid
© pressure
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Over pressured



Simplified Rheological Stratification - 5
Strain - Dependent Properties - Cohesion, C

Strength or Differential Stress, J, Cohesion Softening

C decreases with strain, €

(strictly f (€4p, €2p.€3p))

Pressure, P

0, ¢, = constant

Depth . -
Simple parameterization

Case example:

0.10

C"=C/pgh=C/P = Cohesion/ Pressure



Simplified Rheological Stratification - 6

Strain - Dependent Properties - Internal Angle of
Friction, ¢

Softening

Strength or Differential Stress, J, {1
AR

C = constant
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Interpretation of ¢y == ¢,
1) Effect of Pore Fluid Pressure = Increases
(0o, —> 0, , because A =— or

P Decreases
2) Mineral Reactions

¢'e1(370) q)ez(1?°)
by creation of weak phyllosilicates (Bos and Spiers, JGR, 2002)

3) In 'sandboxes' ¢y — (O, caused by 'packing’
differences - dilatant shears, dense pack where P is high
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Current and Future Directions
2D Approaches

Bridging of scales - improving resolution
— Parallel solution
— Nested model approaches

Coupling fluid flow — deformation

Magmatism — prediction and migration
Phase changes

Sediment interfaces



Questions

Importance of Elasticity
Dilatational Plasticity



Gcube
/\7\ A New Three-Dimensional Modelling Tool

Jean Braun, Philippe Fullsack & Marthijn de Kool

/r ' A research project co-funded by the Australian National University
s and

Dalhousie University

Gcube A New Three-Dimensional Modelling Tool — p. 1/17
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~ 1= To develop a 3D
. version of our crustal
- deformation model

= Interactions with
hydrosphere (erosion)
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~ = Include lithospheric
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= divFEM
/" = Direct solver
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" = ‘Gobject’ oriented

) C‘

_,,/ \*\lﬁ" Octree division of

space
= divFEM

= Direct solver
/1

=~ Modular/Open struc-
ture (ForTran 90)
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/ ’ “'u;'f Free surface, h|z, y]

1= Interface,
u,v] = (2,9, 2]

= General surface,
fz,y,2) =0

= 3D cloud

= Point, Line
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= Based on division of

\ ~ Unity
- = Variable spatial

discretization

= All elements are
8-node tri-linear cubes

=~ Hanging nodes/faces
dealt with by linear
constraints
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) = "édbjects are represented

by Level Set Functions
(LFS), on their own
‘gobtree’

= LFS’s gobtrees merged into
FEM ‘octreeV’

=~ LFS’s on FEM octree used
to partition space/elements

= dIVFEM:
Jo. AV =5 fy, AV

=~ Octree division at element
level used for integration
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¥ &= WSMP (IBM-Watson Lab:
~\" A Gupta)

s Problem size | Wall time
- = Cholesky Factorization 10 % 40 x 40 | 140s
= Parallel implementation 32 % 32 x 32 | 40-60s
_v= Octrees generate ‘small + refinement
A grids
' = Can solve ill-conditioned
systems

= ldeal to Impose incompress-
Ibility and complex materials
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uc ‘No analytlcal solution
/’ DR for large deformation,
- free surface viscous

problems
.? = One exception: the
e LA slumping bridge
F;r"—:—-" problem (initial V" only)
- &= Difficult to calculate
= Central deflection re-
& | produced numerically

within < 1%
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,F'rée relaxation of
/\*{ large amplitude
(A= \) 'sine’ surface
= 2D FEM with
conformal elements

A7 solution (uniform
&7 discretization)
7 = Good test for div FEM
i’ = Solution Is not intuitive
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Triangular + Conformal FE

—@— Triangle (Step 19)

0.20 J —v¥— Gcube (Step 11)
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= Relaxation of free
surface

= Free fall of sphere

Gcube A New Three-Dimensional Modelling Tool — p. 13/17
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(b) Numerical experiment
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‘1= More testlng
)
/\ = Non-linear rheology

Btk

- = Temperature

= Graphical interface
/7 = et..
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