

H. Stewart, 1978.

Boillot 1985

Manatschal & Bernoulli 1999

Fault Modeling Challenges

Rheology and the link to fault geometry 2D

3D Models of fault patterns

Biggest Problem For Extensional Models:

≻95% of models are amagmatic

>95% of plate separation is by dikes

- both for ridges and rifts

WHITE AND MCKENZIE: MAGMATISM AT RIFT ZONES

Tectonic Stretching

Thorarinsson September 8, 1977

Small Magma Chamber - Short Dikes

Large (and shallow) Magma Chamber - Long Dikes

Coupled modeling of faulting and magmatic processes (an alternative)

System response to a single dyke event

40

50

Maximum shear stress (Deviatoric stress) Changes due to a dyke event

Surface Deformation

Opening of the axis

System response to a single dyke event

Dyke thickness

Downward penetration of dyke

Big Challenge for Extensional Modeling

➢ 3D Dike and fault propagation

Distance of dike propagation

Effect of dike stress changes on fault patterns

>Thermal effect of diking

Coupled modeling of faulting and magmatic

processes

Normal faults form, modeled by Finite Difference Program FLAC.

Dyke is modeled by Boundary Element Program TWODD. Deformation and stress change are feed back to FLAC

Strain rate imposed on meshes (denser meshes at the axis)

