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Fault Modeling Challenges

Rheology and the link to fault geometry 2D

3D Models of fault patterns



Biggest Problem For Extensional Models:

»95% of models are amagmatic

»95% of plate separation is by dikes

- both for ridges and rifts
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A. Limits on Magmatic Rifting
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A. After Finite Loading Time
(10-100's of years)
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Coupled modeling of faulting and magmatic
processes (an alternative)

Rift axis

magmastatic during dyking

Stress at the axis is changed
Lithosphere ‘ into magmastatic Lithosphere _

—"
-

Asthenosphere

Tectonic Stage Magmatic Stage
* Stress and deformation are calculated * Rift system is modeled as an elastic half-spce.
by FLAC - a finite difference code * Stress change and surface defomration due

* Axial region has finer meshes where faults to a dyke event is calculated by Boundary
are well resolved. Rock has visco-elastoplastic Element Method (TWODD)

rheology

Stress change and displacement are added back to FLAC for next cycle



System response to a single dyke event
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System response to a single dyke event
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Big Challenge for Extensional Modeling

» 3D Dike and fault propagation

» Distance of dike propagation
» Effect of dike stress changes on fault patterns

» Thermal effect of diking



Coupled modeling of faulting and magmatic

Processces
A dyke
Lithosph > Lithosph
pererEe breaks out e
Tectonic Stretching Magmatic accretion
Normal faults form, modeled by Finite Dyke is modeled by Boundary Element
Difference Program FLAC. Program TWODD. Deformation and stress
change are feed back to FLAC

Strain rate imposed on meshes (denser meshes at the axis)

Depth (km)

strain rate 1.7e—-16
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