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Machine Learning

. Machine Learning (ML) 1s a Data-driven broad family of statistical

techniques for automatically detecting patterns in data. In ML, the
structure of the data, rather than on physical models, directs research.

ML methods are divided into supervised and unsupervised learning. In
supervised learning, one builds a mapping from inputs to outputs given
labeled I-O pairs. Categorical labels are used for classification. Scalar labels
are used 1n regression. In unsupervised learning, no labels are given.

The features 1n the data are fundamental to ML methods. Many techniques
are used to determine them (e.g. Principle Component Analysis (PCA),
Deep neural networks (NN)). Identifying features, allow Deep Learning.

However: in ML models often the interpretation can remain hidden. ML
models require significant amounts of training data.

. Python and Jupyter Notebooks have a central role in the development of

these techniques.
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Deep Learning of IR images of Erebus

Brian Dye was my first student to ask to work on Machine Learning. We
set up a project on detecting eruptions from infrared images taken every
2s from the rim of the Erebus volcano. Camera installed and data
collection by Nial Peters (Cambridge).




Large eruptions have a seismic signature

» Seismic data gathered using ObsPy. lfhm [
Three-component seismic station at 40Hz
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What are Convolutional Neural Networks

CNN is a combination of different algorithms that work well together.
1) Convolution.

2) Rectified Linear Unit (ReLLU)
3) Pooling
4) Fully Connected Layers
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What are Convolutional Neural Networks

CNN is a combination of different algorithms that work well together.
1) Convolution.

2) Rectified Linear Unit (ReLLU)

3) Pooling

4) Fully Connected Layers
224x224x3 224 x 224 x 64

VGG Architecture
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What are Convolutional Neural Networks

CNN is a combination of different algorithms that work well together.
1) Convolution.

2) Rectified Linear Unit (ReLLU)

3) Pooling

4) Fully Connected Layers
224x224x3 224 x 224 x 64

‘ /% VGG Architecture
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CNN training Images from seismic CC

Automatic image aggregator to train the Machine Learning tool:
No Eruption — From 35 to 30 minutes before the eruption;
Pre Eruption — from 5 minutes to 10 seconds before eruption;
Eruption — 8 seconds of the eruption (5 images);

Post Eruption — 5 minutes from 5 minutes after eruption
Retrain the final layer of a pre-trained network from the ImageNet set.

400,000 training steps were performed with 100 images per training cycle from
a cumulative total of approximately 65,000 images.

We repeated it using PyTorch with only 11 layers, using the VGG architecture.



Machine Learning from Images
1 hour of data: 2014-02-16 7pm-8pm

No Eruption

Eruption

Post Eruption

Pre-eruption was not successful. No-eruption and pre-eruption are
interchangeable. Instead Eruption and Post-eruption is very clear.



Variety of detected erupt1ons

- }F‘y
‘ | | V ----
- b r
[ B 3, B
§ i 4
-- ‘;.‘ “:‘l: | ----
:




Variety of detecr=-

(9]

[ )
Aritnmnti\AnNo




Fundamental cases

Time sequence of detection examples:

a — Typical large eruption

b — Small eruption detected by neural network but not within seismic
cross-correlation threshold

¢ — Plume obscured image likely causing missed detected

d — Plume caused false positive



Comparison seismic and ML




Clustering of the ML outcome

Including Instrument Downtime

Machine Learning of Infrared Images

Predicted Event|Predicted Non-Event
Actual Event 69 3
Actual Non-Event 18 -
Seismic Cross-Correlation
Predicted Event|Predicted Non-Event
Actual Event 47 5
Actual Non-Event 0 -—-

Only Instrument Uptime

Machine Learning of Infrared Images

Predicted Event|Predicted Non-Event
Actual Event 39 3
Actual Non-Event 18 —

Seismic Cross-Correlation

Predicted Event|Predicted Non-Event
Actual Event 37 5
Actual Non-Event 0 -




1. Deep Learning (NN) 1s able to categorize IR

Discussion and Conclusion

10!

1mages, 1dentify eruptions. However deep
learning requires large training datasets.
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We experiment NN of spectrograms.
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Legacy seismic data can help to create
large training datasets that are necessary

for training NN.

NN are particularly effective on images and
might allow to analyze Legacy Seismic Data  pgnasiaihy
avoiding digitization altogether. TE T
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Unsupervised and Supervised Machine
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Automatic 3D Fault Reconstruction

Brennan and [ started to work in the Fall
2017 on the seismicity in central Italy in

2009, the year of L’Aquila earthquake.
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Hypocenters clustering
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Hypocenters clustering
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Extrapolation of the main fault
morphology using Splines

Spline fitting of the surface that best fits the position of the aftershocks



Joint inversion vs. 3D slip GPS based

Planar Joint
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Joint inversion vs. slip on 3D surface
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Jupyter and Binder: the full
experience

L2y CrtHub - bressanbransyik/Faul- Moephology-Obtained-From-Clas: Fault morphology obtaised from clusser

Binder (beta)

Jbtained-From-Clus

1/2/2019
orennanbrunsvik / Fault-Morphology-C

& binder

\ Fault morphology obtained from clusters of altershocks with applications to earthquake trigaering
v 0 relea u

\ miter = Now pull reuest Find file  Clane e dowslcad *

brennanbrunsvi

Loading repository: brennanbrunsvik/Fault-Morphology-
Obtained-From-Clus/master

Build logs show

Here's a non-interactive preview on nbviewer (https://nbviewer jupyter.org)

while we start a server for you. Your binder will open automatically when it is
ready

i README md

Fault-Morphology-Obtained-From-Clus

Fault morphology obtained from clusters of aftershocks with applications to earthquake triggering

Image:: http

Obt ¥ -Clu

ik/Fault-Morphology-Obtained-From-Clus/master 172 hitps//githusk com

hitps://mybinder.org/v2/gh



