RAYLEIGH TUTORIAL

MODULE 5: DIAGNOSTIC OUTPUTS

BEFORE WE BEGIN:

- Create a directory named module5
- Copy c2001_case0_input to module5/main_input
- DELETE benchmark_mode = 1
- TURN Magnetism ON and magnetic_init_type = 7
- Set to run for 50 time steps
- Set n_theta = 48

Softlink rayleigh to module5 directory

IN THIS MODULE:

- Overview of Diagnostic Mechanics
- Diagnostic Types
- Diagnostic Quantities & Menu System

NOTE: We cover plotting/analysis in Module 5

RAYLEIGH DIAGNOSTICS: OVERVIEW

- Rayleigh performs a number of in-situ diagnostics
- Reduces disk usage and post-processing
- In-situ diagnostics represent varying degrees of slicing and averaging
- Controlled via the output namelist
- Each diagnostic stored in dedicated directory
- All outputs respect 2-D domain decomposition
- Many use MPI-IO

- Examine the output_namelist in main_input
- The prefix indicates the diagnostic TYPE
- This is a particular TYPE of analysis that MAY be performed

- VALUES indicates WHAT should be analyzed in THIS fashion
- Numbers are code for physical quantities selected from menu

• In this example, we are analyzing the three velocity components (1,2,3) and temperature or entropy (64)

- FREQUENCY indicates HOW OFTEN we perform THIS analysis
- Units are in time steps
- In this example, we perform our analysis of velocity and temperature once every 100 time steps

• NREC indicates HOW MANY analyses are saved to one file

In this example, 10 analyses are saved within each file.

We generate a new file every 1000 time steps (nrec*freq)

EXERCISE:

- Before we go any further, let's try this out
- Modify these portions (only) of main_input
- Run your code

&output_namelist globalavg_frequency = 2 globalavg_nrec = 10

shellavg_frequency = 5
shellavg_nrec = 5

- Globalavg diagnostics are stored in G_Avgs
- Examine the contents of that directory
- Recall that
 - We output every 2nd time step
 - We stored 10 records per file

00000020 contains time steps: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

nick@nick-\	/ir	rtualE	Sox ~/	/Desl	(top/	′Ray	/leigh_	_Tutorial/m	odule5	\$ l	s-lh	G_Avgs/
total 12K												
- rw- r r	1	nick	nick	472	Jun	17	14:57	00000020				
- rw- r r	1	nick	nick	472	Jun	17	14:57	00000040				
- rw- r r	1	nick	nick	252	Jun	17	14:57	00000060				

00000060 contains time steps: 52, 54, 56, 58, 60

- Shellavg diagnostics are stored in Shell_Avgs
- Examine the contents of that directory
- Recall that
 - We output every 5th time step
 - We stored 5 records per file

00000025 contains time steps: 5, 10, 15, 20, 25

nick@nick-VirtualBox ~/Desktop/Rayleigh Tutorial/module5 \$ ls -lh Shell_Avgs/ total 208K -rw-r--r-- 1 nick nick 101K Jun 17 14:57 00000025 -rw-r--r-- 1 nick nick 101K Jun 17 14:57 00000050

00000050 contains time steps: 30, 35, 40, 45, 50

DIAGNOSTIC TYPES:

Prefix	Directory	Description
globalavg	G_Avgs	Full-Volume Averages:
		$f = \frac{1}{V} \int_{V} g(r, \theta, \phi) dV$
shellavg	Shell_Avgs	Averages over spherical surfaces:
		$f(r) = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} g(r,\theta,\phi) \sin\theta d\theta d\phi$
azavg	AZ_Avgs	Averages in longitude:
		$f(r,\theta) = \frac{1}{2\pi} \int_0^{2\pi} g(r,\theta,\phi) d\phi$
shellslice	Shell_Slices	Spherical Surfaces: $f(r_o, \theta, \phi)$
shellspectra	Shell_Spectra	Spherical harmonic spectra on surfaces

SHELL SLICES AND SHELL SPECTRA

 Shell Slices and Shell Spectra have an additional line that needs to be specified:

> &output_namelist shellslice_levels = 3,16,32,48,62 shellspectra_levels = 16,32,48

- This line specifies the INDICES of radii at which spherical surfaces or spectra are taken
- Index 1 corresponds to the upper boundary
- In our example, index 64 corresponds to the lower boundary

DIAGNOSTIC MENU CODES:

- Documentation in prep, but for now, examine: rayleigh/physics/Diagnostics_Base.F90
- This is the code menu system. How do we read it?

Useful Menu Codes

Quantity	Code		
Vr	1		
V_{θ}	2		
V _φ	3		
Radial Mass Flux	55		
θ -Mass Flux	56		
Temperature/Entropy	64		
Pressure	65		
Kinetic Energy	125		
Axisymmetric V $_{\phi}$ - KE	132		
Br	401		
B_{Θ}	402		
B_{ϕ}	403		
Magnetic Energy	475		
Axisymmetric B_{ϕ} - ME	482		

Final Thoughts

- Many possible outputs ...
- Only specified quantities are calculated
- Different diagnostics types can be used with different code combinations
- Try to sync your outputs so that infrequent outputs are written at same time as frequent outputs...

Useful Menu Codes

Quantity	Code
Vr	1
V_{θ}	2
V_{ϕ}	3
Radial Mass Flux	55
θ -Mass Flux	56
Temperature/Entropy	64
Pressure	65
Kinetic Energy	125
Axisymmetric V $_{\phi}$ - KE	132
Br	401
B_{Θ}	402
B_{ϕ}	403
Magnetic Energy	475
Axisymmetric B_{ϕ} - ME	482

<u>Exercise</u>

- Modify global averages:
 - Include magnetic energy
- Modify shell averages:
 - Include magnetic energy
- Modify shell slices:
 - Include B-field
 - Add additional radial levels
 - Output every 25th timestep
 - 2 records per file

• Run the code