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Types of State Estimation (dimensions ~1010) 

t 

(1) Filtering: When time 
of desired estimate (t) coincides 
with the last measurement point 

t 

(2) Smoothing: When time 
of desired estimate (t) falls 
within the span of available 
measurement data 

t 

(3) Prediction: When time 
of desired estimate (t) occurs 
after the last available 
measurement 

Atmospheric modeling: the process of numerically solving prognostic 
partial differential equations based on fundamental conversation laws, 
(e.g., momentum, energy, mass, moisture) that govern atmospheric fluid  

Data Assimilation: the process to obtain the best estimate by combing the 
prior estimate (from model forecast) and new observations, along with 
associated uncertainties. 

 



What are we modeling: Climate prejection 
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What are we modeling: Weather prediction 



Annual	  Mean	  NH	  500hPa	  height	  Day-‐5	  Anomaly	  CorrelaBons	  

•  ECMWF,	  GFS	  and	  CMC	  were	  beQer	  in	  2012	  than	  in	  2011.	  	  GFS	  has	  the	  largest	  gain.	  
•  UKM	  and	  FNOMC	  were	  slightly	  worse	  in	  2012	  than	  2011.	  



How Far We’ve Come 

Arkansas: June 10, 2010 
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How Far We’ve Come 



How We Got There 
1.  Better resolution: both horizontal & vertical, and in time 
2.  Better dynamics and numerics: more accurate formulations with 

fewer approximations / simplifications 
3.  Better physics: better representation of small-scale processes like 

radiation, clouds, precipitation & turbulent exchange of heat, 
moisture and momentum 

4.  Better data: Increase in available observations, especially from 
remote sensing instruments such as satellites/radars 

5.  Better data assimilation: more accurate analysis and 4-dimensional 
data assimilation producing improved initial conditions 

6.  Use of ensembles: for uncertainty and probabilistic estimates for 
the background prior, analysis posterior, and forecast  

7.  Better computing: increase in in data processing and computer 
power by ~10^15 times since 1955 of the first NWP to current 



Importance of Observations and Data Assimilation: 
Impact of satellite data on global NWP…..  



Data Assimilation: A Simple Example 

T = T1 + K (T2-T1);   K = σ1 
2/(σ1

2+σ2
2) 

If T1 is the  background state with std of σ1 ; T2 is the observation 
with std of σ2 , then the posterior analysis T and its std σ will be: 

σ2 = σ1 
2 σ2

2 /(σ1
2+σ2

2) 

or   T = [σ2 2/(σ1
2+σ2

2)] T1 + [σ1 
2/(σ1

2+σ2
2)]T2 



Data Assimilation: A Multivariate Example 

V 

T 

T,  V T 

T = T1 + K (V2-V1) 
    
K =Cov(T,V)/(σv1

2+σv2
2) 

 
In EnKF, Cov(T,V) is 
estimated by short-range 

ensemble and is flow-
dependent 

If T1 is unobserved but with measurements of V2 (e.g., radar radial 
velocity obs), then the posterior analysis T depends on background 
error covariance Cov(T,V): 



Prevailing data assimilation techniques: 3DVAR  



{

Minimization across time & a trajectory fitting using a adjoint model  

The analysis of 4DVar is converted to a minimization 
process of the cost function (J) under both the 
constraints from observations and model trajectory.  

Prevailing data assimilation techniques: 4DVAR  



Forecast Analysis Forecast 

etc. 

EnKF approach propagates and updates uncertainties 
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Forecast step: Analysis step: 
Truth Ensembles Obs 
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Emerging DA techniques: ensemble Kalman filter 



NaBonal	  Hurricane	  Center	  Official	  Intensity	  Errors	  



Assimilate Airborne Doppler Winds with WRF-EnKF 
 Available for 20+ years but never used in operational models due to the lack of 

resolution and/or the lack of efficient data assimilation methods  
 

Superobservations: 1. Separate forward and backward scans; 2. treat every 3 
adjacent full scans as one fixed-space radar (translation<5km); 3. thinning ---one 

bin for 2 km in radial distance and 3 degree in scanning angle; 4. use medium as 
SO after additional QC checking 

These SOs are generated on flight of NOAA P3’s; transmitted to ground in real-time 
(Weng and Zhang 2012 MWR)!WRF-EnKF: 3 domains (27, 9, 3km), 60-member ensemble 



PSU WRF-EnKF Forecasts Assimilating Airborne Vr  
Mean absolute track (km) & intensity (kts) error for all 2008-2010 P3 missions 
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Interpolated WSP(t) =  WSP(t) -  
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(Zhang et al. 2011 GRL) 

Better resolution & physics; better data (inner core obs); better assimilation (EnKF); big computing 



PSU Realtime WRF-EnKF w/ assimilation 
of airborne Doppler winds for Sandy (2012) 



PSU Realtime WRF-EnKF w/ assimilation 
of airborne Doppler winds for Sandy (2012) 

Observation of 5-day total rainfall  WRF-EnKF forecast 



E4DVAR: 2-way Coupling of EnKF with 4DVar 

Necessary Variable Changes: 
EnKF provides ensemble-based background error covariance (Pf) for 4DVar 
EnKF provides the prior ensemble mean (   ) as the first guess for 4DVar 
4DVar provides deterministic analysis (   ) to replace the posterior ensemble 
mean for the next ensemble forecast 

x
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Proof-of-concept in Zhang, Zhang and Hansen (2009 AAS), real-data expts in Zhang and Zhang (2012 MWR) 

Emerging DA techniques: hybrid and coupling 



Total RMSE of U, V, T and Q with 0~72 lead time 

(Zhang	  and	  Zhang	  2012;	  Zhang	  et	  al.	  2012)	  

E4DVar, E3DVar vs. EnKF, 3DVar, 4DVar 



During most of the simulation, SSPE predicts p values lower than 2.0 (default).  
This corresponds to stronger diffusivity in the middle and upper daytime PBL.  

Hu, Zhang & Nielsen-Gammon (2010a GRL) 

Simultaneous	  State	  and	  Parameter	  Es;ma;on	  for	  
Treatment	  of	  Model	  Error	  

A	  real-‐data	  study	  on	  WRF/PBL	  error	  

Emerging DA Science: State + Parameter Estimation 



Parameter Estimation of Physically-Based Distributed 
Land Surface Hydrologic Model Using EnKF 

Yuning Shi, Ken Davis, Fuqing Zhang, Chris Duffy 

Shi et al. (2013b) 

Emerging DA Science: State + Parameter Estimation 



Towards global cloud-resolving models: NCAR/DOE 



Demands for higher resolution and more computing: 
Towards cloud-resolving global models 



EXECUTIVE SUMMARY: 
EARTHCUBE WORKSHOP RESULTS 

 
Mohan Ramamurthy, Unidata/UCAR 

Russ Schumacher, Colorado State University 
 Fuqing Zhang, Penn State University  

 
Workshop Dates: 17-18 December 2012 

  
Earth Cube Workshop Title: Shaping the Development of EarthCube 

to Enable Advances in Data Assimilation and Ensemble Prediction 



Important science drivers and challenges  
•  What are the limits of predictability in the atmosphere? What are the 

sources of uncertainty/errors, and how do they feed into predictability? 
•  What observations are critically needed to enhance atmospheric 

predictions, and where? What is the optimal configuration of the 
observation network? 

•  What are the appropriate types, combinations, and configurations of 
parameterization schemes for high-resolution global cloud-resolving 
models?  How can the errors and biases in these parameterizations be 
quantified and corrected? 

•  What is the optimal ensemble configuration to accurately predict the 
distribution of possible outcomes? How many ensemble members are 
needed and how should the ensembles be initialized? 

•  What are the advantages and disadvantage of variational versus ensemble-
based data assimilation techniques, as well as different types of hybrid and 
coupling data assimilation approaches?  

•  What are the most effective ways to post-process ensemble forecasts to 
achieve reliable and calibrated probabilistic predictions? 



Challenges to high-impact, interdisciplinary science  
•   Significant barriers exist in using the data efficiently or integrating them 
into data assimilation or ensemble prediction systems. Too much overhead to 
doing research efficiently – e.g., setting up one's data and analyzing it.  
•   The scientific community lacks easy-to-use common cyberinfrastructure 
frameworks, data format standards, sufficient metadata for observations, and 
methods/tools for quality controlling observations, mining of large volumes 
of data, visualization, and verification. 
•   While many good shared facilities exist in this field, their operations and 
services are not always well coordinated or integrated. 
•   Lack of a central repository for finding, accessing, and using data and 
software. 
•   Significant spin-up time for students in preparing, using, processing, and 
analyzing data. While similar challenges exist for researchers, such problems 
are particularly acute for students who have a limited time before they 
graduate. 
•   Barriers to collaboration between closely linked disciplines; e.g., 
Atmospheric Sciences, Computer Science, Mathematics and Statistics 
 
 



Needed and desired tools, databases, etc.  
•  Centralized data repositories and services that link existing and 
future data systems. For example, a centralized community repository 
could be created for data submission and sharing. 
•  Advanced software, tools kits, and services for quality control, in-
depth data analysis, visualization, verification, and mining of data 
(observational and model output).  These tools and services need to be 
user-friendly and accessible by the whole scientific community. 
•   Common data formats and frameworks for assimilation, modeling, 
analysis and visualization. 
•  Common data assimilation framework; currently, each assimilation 
system uses its own framework for data I/O, processing, and running 
algorithms. 
•   Collaboration tools, platforms, and frameworks (e.g., Wiki for data) 
•   Server-side processing tools for data processing, analysis, 
visualization 



How to move forward using EarthCube  
•  A pilot project on coordinated, distributed national ensemble prediction that 

involves universities that are interested in participating 
•   Developing a prototype system that links data sets/systems together, such as 

the reanalysis data sets; develop a system that works seamlessly, and then 
expand to include other data sets/systems 

•  Continued discussion with the goal of developing a concrete plan for greater 
coordination of ongoing and future programs and facilities that serve the 
data assimilation and prediction communities, and developing a next-
generation testbed facility to advance the science. 

•  PI meetings to leverage and expand communication, and enhance data 
sharing, and facilitate sustained interactions 

•  Entrain current undergraduate and graduate students into research and 
educational activities related to “big data”, ensemble prediction and data 
assimilation, and EarthCube, to move these initiatives forward for the future 
scientific workforce. 

•  Reach out to other geoscience communities, including oceanography, and 
hydrology, as well as the computer and information science communities. 

 



How Far We’ve Come 

Arkansas: June 10, 2010 

Annual WPC Threat Scores: 1.00 Inch 
Day 1 / Day 2 / Day 3 



Bias	  and	  error	  of	  T2	  

Hu, Zhang & Nielsen-Gammon (2010a GRL) 



NMMB	  storm-‐scale	  nest:	  ApplicaBon	  
to	  High	  Impact	  Weather	  

Ø  IniBalized	  with	  RAPv2	  
analysis	  

Ø  12km	  parent	  domain	  with	  
1.3km	  moving	  nest	  

Ø  Nest	  moBon	  prescribed	  
Ø  Output	  every	  10	  minutes	  
Ø  Supports	  NOAA	  WoF	  and	  

WRN	  iniBtaves	  
Ø  Ongoing	  development:	  

Ø  Nest	  movement	  based	  on	  
phenomena	  of	  interest	  

Ø  2-‐way	  nesBng	  for	  hurricane	  
applicaBons	  

Ø  ComputaBonally	  efficient	  

1.3	  KM	  NMMB	  Moving	  Nest	  applied	  to	  29	  June	  2012	  DC	  Derecho	  
Simulated	  maximum	  composite	  radar	  reflecBvity	  

33 



Rainfall 
Forecasts 
with PSU 

WRF-
EnKF 



Idealized TC: 
f-plane  

zero env wind 
fixed SST 

Nested Grids 

WRF Model Physics: 
WSM3 simple ice 
No radiation 
Relax to initial temp. 
Cd (Donelan) 
Ce (Carlson-Boland) 
Ce/Cd ~ 0.65 
YSU PBL 
LES PBL 
 

(Δ ≥1.67km)
(Δ <1.67km)

Demands for higher resolution and more computing: 
results from one idealized large-eddy simulation  
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 Courtesy of Rich Rotunno at NCAR 
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CFSv3	  

ConvecZve	  Allowing	  Data	  AssimilaZon	  –	  ARW	  

ConvecZve	  Allowing	  Data	  AssimilaZon	  –	  NMMB	  

ARW	  HRRRE	  members	  CONUS	  and	  Alaska	  

NMMB	  HRRRE	  members	  CONUS,	  Alaska,	  Hawaii,	  Puerto	  Rico	  
NMMB	  Storm	  Scale	  Ensemble	  members	  within	  CONUS	  and/or	  Alaska	  
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Icosahedral Model Lat/Lon Model 

•  Near constant resolution over the globe 
•  Efficient high resolution simulations 





EvoluBon	  of	  Rc	  	  	  

During the entire simulation, SSPE predicts Rc values higher than 0.25 (default).  
This corresponds to stronger mixing under weakly stable conditions.  

Hu, Zhang & Nielsen-Gammon (2010a GRL) 



Parameter Estimation of Physically-Based 
Distributed Land Surface Hydrologic Model 

Using Ensemble Kalman Filter 
Yuning Shi, Ken Davis, Fuqing Zhang, Chris Duffy 



•  Observations 
–  Discharge 
–  Groundwater level and 

soil moisture 
–  Land surface 

temperature 
–  Latent heat flux 

•  Fully-coupled land-surface hydrologic model 
•  Land-surface scheme is mainly adapted from 

Noah LSM 
•  Fully coupled surface water, soil water, 

groundwater, and land surface components 

Flux-PIHM 



Advantages	  of	  4DVar	  over	  3DVar	  

i)  Dealing	  with	  asynchronous	  
observa;ons	  

ii)  Obtaining	  implicit	  flow-‐
dependent	  background	  
error	  covariance	  through	  

linear	  models	  

iii)  Using	  a	  forecast	  model	  as	  a	  
dynamic	  constraint,	  

enhancing	  the	  dynamic	  
balance	  of	  the	  analysis	  
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x: State, dimension ~106-108 
y: Observation, dimension ~103-106 

H: Observation operator 

M: Dynamical model operator 

Data Assimilation: Terminology 
The process to obtain a posterior estimate or analysis at a given 
time is often called data assimilation in atmospheric sciences. 

It usually combined observations with short-term forecast 



Multi-Scale Predictability Foreseen by Lorenz (1969) 

“An error in observing a thunderstorm, after doubling perhaps every 
fifteen minutes until it becomes large, may subsequently lead to an 
error in a larger scale of motion, which may then proceed to double 
every five days. If this is the case, cutting the original error in half 
would increase the range of predictability of the larger scale not by 
five days but by only fifteen minutes.” 

basic state energy E(k) 

error energy E’(k,t) 

initial error 

scale (km) 



Growing Trends and Challenges 
•  Coupling: air-ocean-land-chemistry-ecosytem-human behavior 
•  High resolution: global nonhydrostatic cloud-resolving model (1km) 
•  Limit of predictability: search for flow and scale dependent 

predictability given IC/model error and nonlinear/chaotic nature 
•  Use of ensembles: for uncertainty and probabilistic estimates using 

multi-model, stochastic physics, with IC uncertainty 
•  Observational network design and observation targeting: how to best 

observe, how to quality control and bias correction, … 
•  Advanced data assimilation: from 3DVAR to 4DVAR or EnKF, to 

hybrid and coupling of EnKF, 3DVAR and 4DVAR 
•  Simultaneous state and parameter estimation for better understand 

the physics and treatment of model error 
•  Interdisciplinary: stats, applied math, computer science, social 

science, economics, decision making, data mining, cyberscience, … 
•  Tech Enabling: academics and educator for quasi-operational NWP 



Concluding Remarks on Future Atmospheric Prediction 
•  Better understanding of under-resolved, under-observed, less-

predictable processes and their impacts on predictability 

•  Improve models through better physics and finer resolution 

•  Design and improve observing network, such as hurricane inner-core 
observations from airborne Doppler radars 

•  Implement and develop advanced data assimilation techniques to better 
utilize existing and future observations  

•  Going probabilistic: ensemble-based initialization and forecasting 

•  Design computationally efficient numerics for model integration and 
data assimilation 

•  Combine imperfect model/data for better understanding physics (PE) 

•  Better data sharing, communication, visualization 

•  Giant computers like the TACC Ranger cluster 


