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Types of State Estimation (dimensions ~1019)

(1) Filtering: When time
of desired estimate (t) coincides
with the last measurement point >

t

(2) Smoothing: When time

of desired estimate (t) falls
within the span of available
measurement data >

t

(3) Prediction: When time

of desired estimate (t) occurs

after the last available \\\\

measurement & : >
t

Atmospheric modeling: the process of numerically solving prognostic
partial differential equations based on fundamental conversation laws,
(e.g., momentum, energy, mass, moisture) that govern atmospheric fluid

/L

Data Assimilation: the process to obtain the best estimate by combing the

prior estimate (from model forecast) and new observations, along with
associated uncertainties.



What are we modeling: Climate prejection

Global surface warming (°C)
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What are we modeling: Weather prediction

Climate Forecast NOS — OFS
System Oceans | * Great Lakes

. . hern
Hurricane | Coupled Nort
GFS MOM4 HYCOM Gulf of Mex

— - * ColumbiaR.
NOAH Sea Ice WaveWatch - Bays

¢ Chesapeake Sea
« Delaware Forecast

~4B Obs/Day

Dispersion

Forecast ARL/HYSPLIT
System

Global Data

Assimilation
Severe Weather

WRF NMM/ARW

Short-Range
Space North American Ensemble Ensemble Forecast

Weather Forecast System WRF: ARW, NMM, Air Quality
- GEFS, Canadian Global Ensemble NMMB

ENLIL NAM/CMAQ :

’ . > am 1
NOAA’s Operational Rapid Refresh bls
Numerical Weather Prediction Suite | for Aviation |




Annual Mean NH 500hPa height Day-5 Anomaly Correlations
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* ECMWEF, GFS and CMC were better in 2012 than in 2011. GFS has the largest gain.
 UKM and FNOMC were slightly worse in 2012 than 2011.



Forecast Error (n mi)

How Far We ve Come

NHC Official Annual Average Track Errors

Atlantic Basin Tropical Storms and Hurricanes
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NOAA Tornado Warning Statistics 1987-2011

How Far We ve Come
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How We Got There

Better resolution: both horizontal & vertical, and in time

Better dynamics and numerics: more accurate formulations with
fewer approximations / simplifications

Better physics: better representation of small-scale processes like
radiation, clouds, precipitation & turbulent exchange of heat,
moisture and momentum

Better data: Increase 1n available observations, especially from
remote sensing instruments such as satellites/radars

Better data assimilation: more accurate analysis and 4-dimensional
data assimilation producing improved initial conditions

Use of ensembles: for uncertainty and probabilistic estimates for
the background prior, analysis posterior, and forecast

Better computing: increase in in data processing and computer
power by ~10715 times since 1955 of the first NWP to current



Importance of Observations and Data Assimilation:
Impact of satellite data on global NWP.....

AMSU-A: Adv MW Sounder A on Aqua and NOAA POES (T)
|ASI: IR Atmos Interferometer on METOP (T ,H)

AIRS: Atmos IR Sounder on Aqua (T,H)

AIREP: Aircraft T, H, and winds

GPSRO: RO bending angles from COSMIC, METOP

TEMP: Radiosonde T, H, and winds

QuikSCAT: sfc winds over oceans

SYNOP: Sfc P overland and oceans,H, and winds over oceans
AMSU-B: Adv MW Sounder B on NOAA POES

GOES winds

METEOSAT winds

Ocean buoys (Sfc P, H and winds)

PILOT: Pilot balloons and wind profilers (winds)

HIRS: High-Resol IR Sounder on NOAA POES (T,H)

MSG: METEOSAT 2nd Generation IR rad (T,H)

MHS: MW humidity sounder on NOAA POES and METOP (H)
AMSRE: MW imager radiances (cloudsand precip)

SSMI: Special Sensor MW Imager (H and sfc winds)

GMS: Japanese geostationary satellite winds

MODIS: Moderate Resolution Imaging Spectroradiometer (winds)
GOES IRrad (T,H)

MTSATIMG: Japanese geostationary sat vis and IR imagery
METEOSAT IR Rad (T ,H)

03: Ozone from satellites




Data Assimilation: A Simple Example

If T, is the background state with std of o, ; T, is the observation
with std of o, , then the posterior analysis T and its std o will be:

Probability

T=T,+K(T,-T); K=0,%(0,°+0,?)
or T=[0,2/(0,240,2)] T, +[0,%(0,2+0,2)]T,

0% =0,20,%(0,*+0,?)
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Data Assimilation: A Multivariate Example

If T, is unobserved but with measurements of V, (e.g., radar radial
velocity obs), then the posterior analysis T depends on background

error covariance Cov(T,V):

Z
T=T,+K(V,-V,)
1.5}
K =Cov(T,V)/(o,,**+0,,?)
T 1
In EnKF, Cov(T,V) is
05! | estimated by short-range
. ensemble and is flow-
dependent

0 05 1 15 2
V




Prevailing data assimilation techniques: 3DVAR

3D Variational assimilation (3D-Var)

The analysis is found as the model state x corresponding to
the minimum of the (scalar) cost function

J(x) = S(X — X' B (x—x")+-(Hx—-y)'R ' (Hx —y)

>

‘

O |

~ ~

L]{' '<I4)

where

J, measures the departure from the background field xb

J, measures the departure from the observations y



Prevailing data assimilation techniques: 4DVAR
Minimization across time & a trajectory fitting using a adjoint model

A

-
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The analysis of 4DVar is converted to a minimization
process of the cost function (J) under both the
constraints from observations and model trajectory.

J=J,+J,




Emerging DA techniques: ensemble Kalman filter
EnKF approach propagates and updates uncertainties

Forecast Analysis Forecast
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Natio

nal Hurricane Center Official Intensity Errors

Forecast Error (kt)
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Assimilate Airborne Doppler Winds with WRF-EnKF

Available for 20+ years but never used in operational models due to the lack of
Zenith

r20°

Superobservations: 1. Separate forward and backward scans; 2. treat every 3

adjacent full scans as one fixed-space radar (translation<Skm); 3. thinning ---one
bin for 2 km in radial distance and 3 degree in scanning angle; 4. use medium as

SO after additional QC checking
These SOs are generated on flight of NOAA P3’s; transmitted to ground in real-time

WRF-EnKF: 3 domains (27, 9, 3km), 60-member ensemble (Weng and Zhang 2012 MWR)



PSU WRF-EnKF Forecasts Assimilating Airborne Vr

Mean absolute track (km) & intensity (kts) error for all 2008-2010 P3 missions
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Better resolution & physics; better data (inner core obs); better assimilation (EnKF); big computing

(Zhang et al. 2011 GRL)



PSU Realtime WRF-EnKF w/ assimilation
of airborne Doppler winds for Sandy (2012)
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PSU Realtime WRF-EnKF w/ assimilation
of airborne Doppler winds for Sandy (2012)

Observation of 5-day total rainfall WRF-EnKF forecast
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Emerging DA techniques: hybrid and coupling

E4DVAR: 2-way Couplina of EnKF with 4DVar

JAN

A | A
(}f P/) E v ps | Y :
’ (r-D— | (x, ),?__ : (x ),?J,l :
2 1 2 | 2 1
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4DVAR
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Y Y Y
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Necessary Variable Changes:

EnKF provides ensemble-based background error covariance (P for 4DVar
EnKF provides the prior ensemble mean (_5 as the first guess for 4DVar
4DVar provides deterministic analysis (—a) to replace the posterior ensemble
mean for the next ensemble forecast

Proof-of-concept in Zhang, Zhang and Hansen (2009 AAS), real-data expts in Zhang and Zhang (2012 MWR)



E4DVar, E3DVar vs. EnKF, 3DVar, 4DVar
Total RMSE of U, V; T and Q with 0~72 lead time
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(Zhang and Zhang 2012; Zhang et al. 201



Emerging DA Science: State + Parameter Estimation

Simultaneous State and Parameter Estimation for
Treatment of Model Error
A real-data study on WRF/PBL error
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During most of the simulation, SSPE predicts p values lower than 2.0 (default).
This corresponds to stronger diffusivity in the middle and upper daytime PBL.
Hu, Zhang & Nielsen-Gammon (2010a GRL)



Parameter Est/matlon of Physically-Based Distributed

Land Surface Hydrologic Model Using EnKF

1 2
15 2
®‘~0.8 " . =
0.6 1] 1.5}
] o 0.5 r-
0.4
0 1
5 1
4 0.5
. - =
: 5 O 03 ~
2Fr=f--v= 20
1t -0.5
0 -1
M A M J J M A M J J
Month
= Control run
——Case +

——Case - Shi et al. (2013b)




Towards global cloud-resolving models: NCAR/DOE

Model for Prediction Across Scales

MPAS

MPAS-Atmosphere

Unstructured spherical centroidal Voronoi meshes
Mostly hexagons, some pentagons and 7-sided cells.
Cell centers are at cell center-of-mass.
Lines connecting cell centers intersect cell edges at right angles.
Lines connecting cell centers are bisected by cell edge.
Mesh generation uses a density function.
Uniform resolution — traditional icosahedral mesh.

Solvers
(1) hydrostatic equations (PEs)
(2) Fully compressible
nonhydrostatic equations

(explicit simulation of clouds) ,,
k

Solver Technology

Integration schemes are u;
similar to WREF.



Demands for higher resolution and more computing:
Towards cloud-resolving global models

|M PAS MPAS 3km global simulations,
Model for Prediction Across Scales
t 27 Aug— 1 Sept 2010
850 hPa hgt, 6h acc precip, valid at 2010-08-29 12:00:00 [mm]
N e e e e Atlantic Basin
o 500 Danielle
Earl
Fiona

30N

Eastern Pacific
Frank (disp. 8/28)

Western Pacific
Kompasu

TS Lionrock (missing??)
TD Nantheum (missing)




EXECUTIVE SUMMARY:
EARTHCUBE WORKSHOP RESULTS

Mohan Ramamurthy, Unidata/UCAR
Russ Schumacher, Colorado State University
Fuqing Zhang, Penn State University

Workshop Dates: 17-18 December 2012

Earth Cube Workshop Title: Shaping the Development of EarthCube
to Enable Advances in Data Assimilation and Ensemble Prediction



Important science drivers and challenges

What are the limits of predictability in the atmosphere? What are the
sources of uncertainty/errors, and how do they feed into predictability?

What observations are critically needed to enhance atmospheric
predictions, and where? What is the optimal configuration of the
observation network?

What are the appropriate types, combinations, and configurations of
parameterization schemes for high-resolution global cloud-resolving
models? How can the errors and biases in these parameterizations be
quantified and corrected?

What 1s the optimal ensemble configuration to accurately predict the
distribution of possible outcomes? How many ensemble members are
needed and how should the ensembles be 1nitialized?

What are the advantages and disadvantage of variational versus ensemble-
based data assimilation techniques, as well as different types of hybrid and
coupling data assimilation approaches?

What are the most effective ways to post-process ensemble forecasts to
achieve reliable and calibrated probabilistic predictions?



Challenges to high-impact, interdisciplinary science

 Significant barriers exist in using the data efficiently or integrating them
into data assimilation or ensemble prediction systems. Too much overhead to
doing research efficiently — e.g., setting up one's data and analyzing it.

* The scientific community lacks easy-to-use common cyberinfrastructure
frameworks, data format standards, sufficient metadata for observations, and
methods/tools for quality controlling observations, mining of large volumes
of data, visualization, and verification.

« While many good shared facilities exist in this field, their operations and
services are not always well coordinated or integrated.

» Lack of a central repository for finding, accessing, and using data and
software.

 Significant spin-up time for students in preparing, using, processing, and
analyzing data. While similar challenges exist for researchers, such problems
are particularly acute for students who have a limited time before they
graduate.

« Barriers to collaboration between closely linked disciplines; e.g.,
Atmospheric Sciences, Computer Science, Mathematics and Statistics



Needed and desired tools, databases, etc.

 Centralized data repositories and services that link existing and
future data systems. For example, a centralized community repository
could be created for data submission and sharing.

« Advanced software, tools kits, and services for quality control, in-
depth data analysis, visualization, verification, and mining of data
(observational and model output). These tools and services need to be
user-friendly and accessible by the whole scientific community.

 Common data formats and frameworks for assimilation, modeling,
analysis and visualization.

« Common data assimilation framework; currently, each assimilation
system uses its own framework for data I/O, processing, and running
algorithms.

* (Collaboration tools, platforms, and frameworks (e.g., Wiki for data)

» Server-side processing tools for data processing, analysis,
visualization



How to move forward using EarthCube

A pilot project on coordinated, distributed national ensemble prediction that
involves universities that are interested in participating

Developing a prototype system that links data sets/systems together, such as
the reanalysis data sets; develop a system that works seamlessly, and then
expand to include other data sets/systems

Continued discussion with the goal of developing a concrete plan for greater
coordination of ongoing and future programs and facilities that serve the
data assimilation and prediction communities, and developing a next-
generation testbed facility to advance the science.

PI meetings to leverage and expand communication, and enhance data
sharing, and facilitate sustained interactions

Entrain current undergraduate and graduate students into research and
educational activities related to “big data”, ensemble prediction and data
assimilation, and EarthCube, to move these initiatives forward for the future
scientific workforce.

Reach out to other geoscience communities, including oceanography, and
hydrology, as well as the computer and information science communities.



How Far We ve Come

Threat Score

Annual WPC Threat Scores: 1.00 Inch
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Bias and RMSE of T2, °C
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NMMB storm-scale nest: Application
to High Impact Weather

1.3 KM NMMB Moving Nest applied to 29 June 2012 DC Derecho
Simulated maximum composite radar reflectivity

MaximumvyComposite radar reflectivity [dbZ] {atmo=s col)

Initialized with RAPv2 20120629 15h 00m 0.00s

analysis EEEL Y Ay

12km parent domain with
1.3km moving nest

Nest motion prescribed
Output every 10 minutes

Supports NOAA WoF and
WRN inititaves

Ongoing development:

vV VVV VY VY

> Nest movement based on
phenomena of interest

» 2-way nesting for hurricane

applications L T T [ [

5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.00 75.00

» Computationally efficient
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Demands for higher resolution and more computing:
results from one idealized large-eddy simulation

6075km(A =15km)

Idealized TC:

f-plane
zero env wind

fixed SST

Nested Grids }::>

1500km (A = 5km)

WRF Model Physics:

. . 333km (A =556m) _
WSM3 simple ice (A=185m)

No radiation

Relax to initial temp.
Cd (Donelan)

Ce (Carlson-Boland)

Ce/Cd ~0.65 50 vertical levels
YSU PBL (A2167km) Az=60m~1km

LES PBL (A<167km) Ztop=27km

Courtesy of Rich Rotunno at NCAR



Sensitivity to grid resolution: 10-m Wind Speed t=9.75d

(A=1.67km) (A =556m)
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Courtesy of Rich



Projected WCOSS Phase 2 (2 Petaflop) End State 2018
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Lat/Lon Model Icosahedral Model

* Near constant resolution over the globe
* Efficient high resolution simulations




Anthropogenic

Natural
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Evolution of Rc

8/30/00 8/30/12 8/31/00 8/31/12  9/1/00  9/1/12  9/2/00
CST, month/day/hr

During the entire simulation, SSPE predicts Rc values higher than 0.25 (default).
This corresponds to stronger mixing under weakly stable conditions.
Hu, Zhang & Nielsen-Gammon (2010a GRL)



g isrameter Estimation of Physically-Based
Distributed Land Surface Hydrologic Model
Usm Ensemble Kalman Fllter
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Month
—Control run
—(Case +
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-—--Manual calibration



= Flux-PIHM

* Fully-coupled land-surface hydrologic model

* [and-surface scheme is mainly adapted from
Noah LSM

* Fully coupled surface water, soil water,
groundwater, and land surface components

CH

* Observations
— Discharge
— Groundwater level and
soil moisture

— Land surface
temperature

—NModel grid © RTHnet wells 1, 2, and 3
---Actual watershed boundary * Soil temperature stations
—Modeled stream path B Flux tower and weather station
---Actual stream path ¢ Outlet gauge




Advantages of 4DVar over 3DVar

3D—Var

Other observations
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i) Dealing with asynchronous
observations

ii) Obtaining implicit flow-
dependent background
error covariance through
linear models

iii) Using a forecast model as a
dynamic constraint,
enhancing the dynamic
balance of the analysis



Data Assimilation: Terminology

The process to obtain a posterior estimate or analysis at a given
time 1s often called data assimilation in atmospheric sciences.

[t usually combined observations with short-term forecast

x: State, dimension ~10°-103
y: Observation, dimension ~103-106
H: Observation operator

M: Dynamical model operator
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Multi-Scale Predictability Foreseen by Lorenz (1969) ‘

basic state energy E(k)
( error energy E’ (k,t)

| [ day

s /nes initial error

V fhr
15/m
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40000
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20000 -
10000
500
6251
156

scale ?km)

“An error in observing a thunderstorm, after doubling perhaps every
fifteen minutes until it becomes large, may subsequently lead to an
error in a larger scale of motion, which may then proceed to double
every five days. If this is the case, cutting the original error in half

would increase the range of predictability of the larger scale not by
five days but by only fifteen minutes.”



Growing Trends and Challenges

Coupling: air-ocean-land-chemistry-ecosytem-human behavior

High resolution: global nonhydrostatic cloud-resolving model (1km)

Limit of predictability: search for flow and scale dependent
predictability given IC/model error and nonlinear/chaotic nature

Use of ensembles: for uncertainty and probabilistic estimates using
multi-model, stochastic physics, with IC uncertainty

Observational network design and observation targeting: how to best
observe, how to quality control and bias correction, ...

Advanced data assimilation: from 3DVAR to 4DVAR or EnKF, to
hybrid and coupling of EnKF, 3DVAR and 4DVAR

Simultaneous state and parameter estimation for better understand
the physics and treatment of model error

Interdisciplinary: stats, applied math, computer science, social
science, economics, decision making, data mining, cyberscience, ...

Tech Enabling: academics and educator for quasi-operational NWP



Concluding Remarks on Future Atmospheric Prediction

 Better understanding of under-resolved, under-observed, less-
predictable processes and their impacts on predictability

* Improve models through better physics and finer resolution

* Design and improve observing network, such as hurricane inner-core
observations from airborne Doppler radars

* Implement and develop advanced data assimilation techniques to better
utilize existing and future observations

* Going probabilistic: ensemble-based initialization and forecasting

e Design computationally efficient numerics for model integration and
data assimilation

« Combine imperfect model/data for better understanding physics (PE)
 Better data sharing, communication, visualization

* Giant computers like the TACC Ranger cluster




