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Challenges

» Discretization
» high accuracy
» heterogeneity and homogenization
» tracers for material properties
» Solvers
» stiff transient systems
> elliptic problems
» globalization for nonlinear problems
» Statistics
» Seismic tomography
» Data assimilation and validation
» Experimental design
» Reusability and reproducibility
» Libraries'
» Common formats
» Shared simulation software

'Disclaimer: | am a developer of PETSc.
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SPECFEMS3D: Seismic wave propagation and tomography

» Spectral element methods: accurate, local, smooth solutions
» Linear materials

» Adjoint-based tomography
> http://geodynamics.org/cig/software/specfem3d

[c/o Carl Tape, UAF]
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http://geodynamics.org/cig/software/specfem3d

PyLith:

Short-term Lithosphere

Unstructured finite element methods
Faults meshed-in (CUBIT, LaGriT)
Cohesive cells and Lagrange multipliers

Nonlinear materials and non-smooth beha
Extensible material models and boundary
Long time scales requires implicit solvers: fieldsplit and multigrid

Libraries: PETSc (mesh and solvers), spatialdata (proj), numpy,
FIAT (elements), HDF5

http://geodynamics.org/cig/software/pylith


http://geodynamics.org/cig/software/pylith

Stokes problems are ubiquitous in long-term geodynamics

V- (=nDu+pl)=pg
Vu=c

v

Du = [Vu+ (Vu)T], rheology 1(Du,...)
Mantle, lithosphere, magma
Coupled to other processes

» Thermodynamics

» Multi-material transport, chemistry

» Plasticity/brittle failure: difficult non-smooth
» Elasticity: typical Maxwell time of 1000 years
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Discontinuous coefficients: 10'° jumps

v

Material properties defined using markers
Discretization is difficult

» Trade-offs between accuracy, robustness, and efficiency
» What can go wrong? Next sequence from Dave May (ETHZ)

v
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~ Q1Q1stab :: Incompressibility
i , VX Vy

Pl ngxso “. - I’:‘f I
3 1Q1stab : . i
-

Yury Mishin o

S
Thursday, December 17, 2009



30x30

-2 Signs of artificial compaction
due to mesh dependent
incompressibility

& 3 Result of forward
evolution is incorrect.
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- Q1Q1stab : Incompressibility
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- Q1Q1stab :: Incompressibility
2. Artifacts at interface Ceeeeee T
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" Q1Q1stab :: Incompressibility
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- Q1Q1stab :: Incompressibility
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Material transport using markers
> markers

« quadrature points
ﬁm _)P"D]-ea’-an’P nu
patch of elements

[A] Local L2 projection (Q1)

[B] Piecewise constant (P0)  Effective media theory|

Homogenization
Upscaling
°
@ viscosity, density
[c/o Dave May, ETHZ]




Algorithms keep pace with computing

» Consider an elliptic PDE on an n x n x n grid

» Banded Gaussian Elimination: ¢'(n”)

» Full Multigrid: @' (n?)

» Optimal algorithms become more critical as we solve larger

problems
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The Great Solver Schism: Monolithic or Split?

Split
Monolithic » Physics-split Schwarz
> Direct solvers (based on relaxation)
» Coupled Schwarz » Physics-split Schur
» Coupled Neumann-Neumann (based on factorization)
(need unassembled matrices) > approximate commutators

SIMPLE, PCD, LSC

» Coupled multigrid » segregated smoothers

X Need to understand local » Augmented Lagrangian
spectral and compatibility » “parabolization” for stiff
properties of the coupled waves
system X Need to understand global

coupling strengths

» Preferred data structures depend on which method is used.
> Interplay with geometric multigrid.



Splitting for Multiphysics

A B||x| _|f

C D||y| g

» Relaxation: -pc_fieldsplit_type
[additive,multiplicative,symmetric_multiplicative]

L O N O GO A N R
D C D 1 1| |C D
» Gauss-Seidel inspired, works when fields are loosely coupled
» Factorization: -pc_fieldsplit_type schur

-1 -1
A B 1 B L
P e ] s=peaas

» robust (exact factorization), can often drop lower block
» how to precondition S which is usually dense?
> interpret as differential operators, use approximate commutators



Multigrid Preliminaries

Multigrid is an O(n) method for solving algebraic problems by
defining a hierarchy of scale. A multigrid method is constructed from:
1. a series of discretizations
» coarser approximations of the original problem
» constructed algebraically or geometrically
2. intergrid transfer operators

» residual restriction I{f (fine to coarse)

» state restriction 7{,’ (fine to coarse)

» partial state interpolation IZ (coarse to fine, ‘prolongation’)
> state reconstruction I, (coarse to fine)

3. Smoothers (S)

» correct the high frequency error components
» Richardson, Jacobi, Gauss-Seidel, etc.
» Gauss-Seidel-Newton or optimization methods



Linear Multigrid

» Multigrid methods use coarse correction for long-range influence

Algorithm MG(A, b) for the solution of Ax = b:

x=_S8"(x,b) pre-smooth
b =1l (r — Ax) restrict residual
= MGIEAL,, b recurse
x=x+11i" prolong correction

x=x+85"(x,b) post-smooth



Status quo for implicit solves in lithosphere dynamics

» global linearization using Newton or Picard

» assembly of a sparse matrix

» “block” factorization preconditioner, approximate Schur
complement

» algebraic or geometric multigrid on positive-definite systems

Why is this bad?

» nonlinearities (e.g., plastic yield) are mostly local
» feed back through nearly linear large scales
» frequent visits to fine-scales even in nearly-linear regions
» no way to locally update coarse grid operator
» Newton linearization introduces anisotropy

» assembled sparse matrices are terrible for performance on

modern hardware

» memory bandwidth is very expensive compared to flops
» fine-scale assembly costs a lot of memory
» assembled matrices are good for algorithmic experimentation

» block preconditioners require more parallel communication



Reproducibility

» Geometry, Boundary, and Initial conditions
» Model configuration has poor reproducibility and automation
» CAD software to create geometry

> Interactive meshing (CUBIT)
» Observational metadata

> lack of uncertainties, correlation
» diverse data sources, hard to quantify value

» Interactive postprocessing
» Model execution can be reproducible

» Exact versions in SCM (Git, Subversion)
» Compilers, dependencies, configure- and run-time options
» Postprocessing scripts



Data assimilation and experimental design

» Impact of geodynamics

» Fundamental science questions

» Hazards, safety, construction

> Industry: minerals, petroleum
» Analysis tools more mature for faster processes

» Short time scales and “single-physics” processes

» Seismic tomography serves both science and industry
» More ad-hoc for longer term processes

» More diverse data sources

» Extremely indirect observations

» Little meaning inferrable using single-physics models

» Uncertainty propagation is under-developed

» Non-smooth processes are troublesome for adjoints
» What measurements provide the most information?



Looking forward

» |s it good for everyone to write their own models?

Diversity is good for improving models

Creating a complete model from scratch is a lot of mundane work
Common interfaces allow users to compare multiple models
Libraries are a maintainable way to provide long-term reuse

Few models start out as libraries, some become libraries
Coupling necessary to understand long-term processes

» Scaling people

» “Experts in everything” are valuable, but hard to find

» The best algorithms remove comfortable abstractions like sparse
matrices

» Many open research topics: difficult to establish interfaces

» Postprocessing

» Status quo is to write entire state to disk — not sustainable
» Think like an engineer: ask precise questions — good for
reproducibility

Yy vV vV VY VY



