Discretization, Solvers, and Statistics in Computational Geodynamics http://59A2.org/files/20130423-EarthCube.pdf

Jed Brown

Mathematics and Computer Science Division, Argonne National Laboratory

EarthCube, Boulder, CO, 2013-04-23

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Challenges

Discretization

- high accuracy
- heterogeneity and homogenization
- tracers for material properties
- Solvers
 - stiff transient systems
 - elliptic problems
 - globalization for nonlinear problems
- Statistics
 - Seismic tomography
 - Data assimilation and validation
 - Experimental design
- Reusability and reproducibility
 - Libraries¹
 - Common formats
 - Shared simulation software

▲□▶▲□▶▲□▶▲□▶ □ のQで

¹Disclaimer: I am a developer of PETSc.

SPECFEM3D: Seismic wave propagation and tomography

- Spectral element methods: accurate, local, smooth solutions
- Linear materials
- Adjoint-based tomography
- http://geodynamics.org/cig/software/specfem3d

・ロト ・四ト ・ヨト ・ヨ

[c/o Carl Tape, UAF]

PyLith: Short-term Lithosphere

- Unstructured finite element methods
- Faults meshed-in (CUBIT, LaGriT)
- Cohesive cells and Lagrange multipliers
- Nonlinear materials and non-smooth beha
- Extensible material models and boundary
- Long time scales requires implicit solvers: fieldsplit and multigrid
- Libraries: PETSc (mesh and solvers), spatialdata (proj), numpy, FIAT (elements), HDF5
- http://geodynamics.org/cig/software/pylith

Stokes problems are ubiquitous in long-term geodynamics

$$\nabla \cdot (-\eta Du + p1) = \rho g$$
$$\nabla \cdot u = c$$

►
$$Du = \frac{1}{2} [\nabla u + (\nabla u)^T]$$
, rheology $\eta(Du,...)$

- Mantle, lithosphere, magma
- Coupled to other processes
 - Thermodynamics
 - Multi-material transport, chemistry
 - Plasticity/brittle failure: difficult non-smooth
 - Elasticity: typical Maxwell time of 1000 years
- Discontinuous coefficients: 10¹⁰ jumps
- Material properties defined using markers
- Discretization is difficult
 - Trade-offs between accuracy, robustness, and efficiency
 - What can go wrong? Next sequence from Dave May (ETHZ)

Thursday, December 17, 2009

Thursday, December 17, 2009

Vx

X-Veloci

Q1Q1stab

30x30

1. Corner anomalies

2. Signs of artificial compaction due to mesh dependent incompressibility

Result of forward evolution is incorrect.

25x25 Q2Pm1

0.4

issische Technische Hochschule Züri ideral Institute of Technology Zurich

Yury Mishin

Vx

50x50 Q1Q1stab

> 25x25 Q2Pm1

- 1. Corner anomaly reduced
- 2. Artifacts at interface still present

Result of forward evolution is incorrect.

Vy

Yury Mishin

Thursday, December 17, 2009

П

Yury Mishin

the Technische Hochschule Zürich

storage(QIQI-100x100) ≈ 2 x storage(Q2PmI - 25x25)

Yury Mishin

Material transport using markers

Algorithms keep pace with computing

- Consider an elliptic PDE on an $n \times n \times n$ grid
- ▶ Banded Gaussian Elimination: $\mathscr{O}(n^7)$
- Full Multigrid: $\mathcal{O}(n^3)$
- Optimal algorithms become more critical as we solve larger problems

[c/o David Keyes, KAUST]

The Great Solver Schism: Monolithic or Split?

Monolithic

- Direct solvers
- Coupled Schwarz
- Coupled Neumann-Neumann (need unassembled matrices)
- Coupled multigrid
- X Need to understand local spectral and compatibility properties of the coupled system

Split

- Physics-split Schwarz (based on relaxation)
- Physics-split Schur (based on factorization)
 - approximate commutators SIMPLE, PCD, LSC
 - segregated smoothers
 - Augmented Lagrangian
 - "parabolization" for stiff waves

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- X Need to understand global coupling strengths
- Preferred data structures depend on which method is used.
- Interplay with geometric multigrid.

Splitting for Multiphysics

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

► Relaxation: -pc_fieldsplit_type [additive,multiplicative,symmetric_multiplicative] $\begin{bmatrix} A \\ D \end{bmatrix}^{-1} \begin{bmatrix} A \\ C \end{bmatrix}^{-1} \begin{bmatrix} A \\ 1 \end{bmatrix}^{-1} \begin{pmatrix} A \\ 1 \end{bmatrix}^{-1} \begin{pmatrix} A \\ D \end{bmatrix}^{-1} \begin{bmatrix} A \\ C \end{bmatrix}^{-1} \begin{pmatrix} A \\ D \end{pmatrix}^{-1} \begin{pmatrix} A \\$

Gauss-Seidel inspired, works when fields are loosely coupled
 Factorization: -pc_fieldsplit_type schur

$$\begin{bmatrix} A & B \\ & S \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ CA^{-1} & 1 \end{bmatrix}^{-1}, \qquad S = D - CA^{-1}B$$

- robust (exact factorization), can often drop lower block
- how to precondition S which is usually dense?
 - interpret as differential operators, use approximate commutators

Multigrid Preliminaries

Multigrid is an O(n) method for solving algebraic problems by defining a hierarchy of scale. A multigrid method is constructed from:

- 1. a series of discretizations
 - coarser approximations of the original problem
 - constructed algebraically or geometrically
- 2. intergrid transfer operators
 - residual restriction I_h^H (fine to coarse)
 - state restriction \hat{I}_h^H (fine to coarse)
 - partial state interpolation I_H^h (coarse to fine, 'prolongation')
 - state reconstruction \mathbb{I}_{H}^{h} (coarse to fine)
- 3. Smoothers (S)
 - correct the high frequency error components
 - Richardson, Jacobi, Gauss-Seidel, etc.
 - Gauss-Seidel-Newton or optimization methods

Linear Multigrid

Multigrid methods use coarse correction for long-range influence

Algorithm MG(A, b) for the solution of Ax = b:

$$x = S^{m}(x,b)$$

$$b^{H} = I_{h}^{H}(r - Ax)$$

$$\hat{x}^{H} = MG(I_{h}^{H}AI_{H}^{h}, b^{H})$$

$$x = x + I_{H}^{h}\hat{x}^{H}$$

$$x = x + S^{n}(x,b)$$

pre-smooth restrict residual recurse prolong correction post-smooth

▲□▶▲□▶▲□▶▲□▶ □ のQで

Status quo for implicit solves in lithosphere dynamics

- global linearization using Newton or Picard
- assembly of a sparse matrix
- "block" factorization preconditioner, approximate Schur complement
- algebraic or geometric multigrid on positive-definite systems

Why is this bad?

- nonlinearities (e.g., plastic yield) are mostly local
 - feed back through nearly linear large scales
 - frequent visits to fine-scales even in nearly-linear regions
 - no way to locally update coarse grid operator
 - Newton linearization introduces anisotropy
- assembled sparse matrices are terrible for performance on modern hardware
 - memory bandwidth is very expensive compared to flops
 - fine-scale assembly costs a lot of memory
 - assembled matrices are good for algorithmic experimentation

block preconditioners require more parallel communication

Reproducibility

- Geometry, Boundary, and Initial conditions
- Model configuration has poor reproducibility and automation
 - CAD software to create geometry
 - Interactive meshing (CUBIT)
 - Observational metadata
 - lack of uncertainties, correlation
 - diverse data sources, hard to quantify value
 - Interactive postprocessing
- Model execution can be reproducible
 - Exact versions in SCM (Git, Subversion)
 - Compilers, dependencies, configure- and run-time options

▲□▶▲□▶▲□▶▲□▶ □ のQで

Postprocessing scripts

Data assimilation and experimental design

- Impact of geodynamics
 - Fundamental science questions
 - Hazards, safety, construction
 - Industry: minerals, petroleum
- Analysis tools more mature for faster processes
 - Short time scales and "single-physics" processes
 - Seismic tomography serves both science and industry
- More ad-hoc for longer term processes
 - More diverse data sources
 - Extremely indirect observations
 - Little meaning inferrable using single-physics models
 - Uncertainty propagation is under-developed
 - Non-smooth processes are troublesome for adjoints

What measurements provide the most information?

Looking forward

- Is it good for everyone to write their own models?
 - Diversity is good for improving models
 - Creating a complete model from scratch is a lot of mundane work
 - Common interfaces allow users to compare multiple models
 - Libraries are a maintainable way to provide long-term reuse
 - Few models start out as libraries, some become libraries
 - Coupling necessary to understand long-term processes
- Scaling people
 - "Experts in everything" are valuable, but hard to find
 - The best algorithms remove comfortable abstractions like sparse matrices

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Many open research topics: difficult to establish interfaces
- Postprocessing
 - Status quo is to write entire state to disk not sustainable
 - Think like an engineer: ask precise questions good for reproducibility