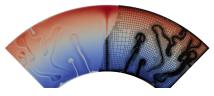
Mantle Convection Simulation in ASPECT

Timo Heister, Clemson University, heister@clemson.edu

2014-05-05, Banff


Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
•000000	000000	0	00000000	0000	000	
ASPECT	Tutoria	al				

- Tonight, 7:30pm
- Location: Black Bear
- Introduction, then hands-on
- Bring your laptop

Also: ASPECT office hours during poster sessions: Tuesday/Wednesday, starting 3:30pm

Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
○●○○○○○	000000	0	00000000	0000	000	
What?						

 $\mathsf{ASPECT} = \mathbf{A}\mathsf{dvanced}\ \mathbf{S}\mathsf{olver}\ \mathsf{for}\ \mathbf{P}\mathsf{roblems}\ \mathsf{in}\ \mathbf{E}\mathsf{arth's}\ \mathbf{C}\mathsf{onvec}\mathbf{T}\mathsf{ion}$

- Mantle convection using modern numerical methods
- Open source, C++
- Available at: http://aspect.dealii.org
- Supported by NSF/CIG:

Kronbichler, Heister and Bangerth.

High Accuracy Mantle Convection Simulation through Modern Numerical Methods.

Geophysical Journal International, 2012, 191, 12-29.

Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
00●0000	000000	0	00000000	0000	000	
Who?						

- Wolfgang Bangerth (Texas A&M)
- Timo Heister (Clemson)
- Contributors:

Markus Bürg, Juliane Dannberg, René Gaßmöller, Thomas Geenen, Ryan Grove, Eric Heien, Martin Kronbichler, Elvira Mulyukova, Ian Rose, Cedric Thieulot → Thanks!

Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
000●000	000000	O	00000000	0000	000	000000000
Numeric	al Chall	enges				

- Large range of scales in space and time
- # High spacial resolution required
- Large problem sizes
- Non-linear coupling of equations
- Convection dominated
- Local vs. global models
- \rightsquigarrow need flexibility, accuracy, and scalability

Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
0000000	000000	0	00000000	0000	000	000000000
Modellin	g Challe	enges				

- Complicated material models
- Uncertainties in parameters
- Benchmarking is hard
- Complex postprocessing
- Coupling with other tools

 \rightsquigarrow need usability, extensibility, easy experimentation

Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
00000●0	000000	0	00000000	0000	000	000000000
Social C	hallenge	s				

- Expertise required in
 - numerical methods
 - scientific computing
 - Iarge scale software development
 - geodynamics
 - mineral physics? seismology?
 - ***** ...
- Large project: direction? continuity?
- need:
 - Documentation, tutorials
 - Training, workshops
 - Funding
 - Growing community is critical
 - \rightsquigarrow CIG is a big help here!

Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
000000	000000	0	00000000	0000	000	
Goals for	ASPEC	CT				

Modern numerical methods:

adaptive mesh refinement, linear and nonlinear solvers, higher-order discretizations, stabilization schemes

Usability and extensibility:

manual: 170+ pages, cookbooks plugin architecture

- Parallel scalability
- Building on others' work:

tested foundation, smaller codebase, automatic improvements

& Community:

GPL, developed in the open, many contributors, we want to help

Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
0000000	•00000	0	00000000	0000	000	
Timeline						

- 2008-2011: deal.II based examples/experiments (Bangerth)
- Oct 2011: Aspect development started
- March 2012: release 0.1
- # April 2013: release 0.2:
 - compositional fields, passive tracers, GPlates, mesh refinement criteria
- May 2013: release 0.3 (bugfixes)
- April 2014: release 1.0
 - a lot of new documentation
 - new examples (2d/3d shells, ...)
 - dynamic topography
 - big performance improvements
 - compositional fields: reactions, boundary conditions, ...
 - ø overhauled tracers
 - ø periodic meshes, nullspace removal, PETSc support

Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
0000000	o●oooo	0	00000000	0000	000	
Status						

Lifetime of scientific codes:

- 1. experimentation with new numerical methods \checkmark
- 2. working, useful for early adopters \checkmark
- 3. useful tool for science applications (with limitations) \checkmark
- 4. science driven development \leftarrow ASPECT
- 5. maintenance
- 6. abandoned

→ need YOUR science problems and feedback for future directions!

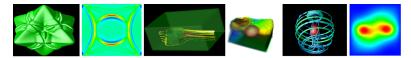
Problem setup, configuration

Materials, Geometries/Boundaries, Adiabats, Postprocessing, Visualization, Interfacing to other tools

Equations, Numerical schemes, Framework

Finite Elements, AMR, Parallel abstraction, Postprocessing, Visualization

Parallelization, IO, linear algebra, linear solvers


Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
0000000	000●00	0	00000000	0000	000	
Features	of deal	.11				

- Open source project, C++
- Maintainers: W. Bangerth, T. Heister, G. Kanschat
- One of the most widely used finite element libraries:
 - # ~ 400 papers using and citing deal.II, ~ 600 downloads/month
- Excellent documentation, examples
- Features:
 - Many finite element types (continuous, DG, RT, ...)
 - # Higher order elements, hp adaptivity
 - Adaptive mesh refinement in 2d, 3d (quads/hexas)
 - Linear algebra: interfaces to PETSc and Trilinos
 - Parallel computing (MPI and/or multi-threading)

my area

Bangerth, Heister and Kanschat.

deal.II Differential Equations Analysis Library, Technical Reference, 2012. http://www.dealii.org.

Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
0000000	0000●0	0	00000000	0000	000	000000000
Equation	ns					

velocity \mathbf{u} , pressure p, temperature T, advected quantities c_i :

$$-\nabla \cdot [2\eta D(\mathbf{u})] + \nabla p = \boldsymbol{\rho} \mathbf{g} \qquad \text{in } \Omega, \qquad (1)$$

$$\nabla \cdot (\rho \mathbf{u}) = 0 \qquad \text{in } \Omega, \qquad (2)$$

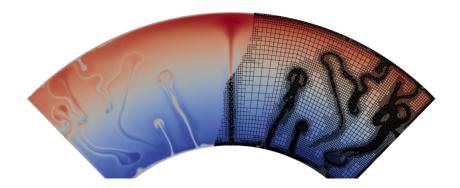
$$\rho C_p \left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) - \nabla \cdot k \nabla T = F \qquad \text{in } \Omega, \qquad (3)$$

$$\frac{\partial c_i}{\partial t} + \mathbf{u} \cdot \nabla c_i = 0 \qquad \text{in } \Omega \qquad (4)$$

- * strain rate $D(\mathbf{u}) = \frac{1}{2} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right) \frac{1}{3} (\nabla \cdot \mathbf{u}) \mathbf{1}$
- * density $\rho(p,T,c,\mathbf{x})$, viscosity $\eta(\mathbf{u},p,T,c,\mathbf{x})$
- \mathbf{s} gravity $\mathbf{g}(\mathbf{x})$
- \mathbf{s} specific heat $C_p(p,T,c,\mathbf{x})$, thermal conductivity $k(p,T,c,\mathbf{x})$
- F: radioactive decay, friction heating, adiabatic compression, latent heat, . . .

Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
0000000	00000	0	00000000	0000	000	
Misc						

- Dimensionalized computations:
 - correct units and scalings
 - can still non-dimensionalize if desired
- Geometries (2d and 3d):


shell, sphere, box, periodic domains, topography, ...

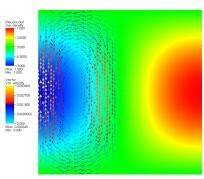
- Interface with: GPlates, PerpleX, (more in progress)
- # Automated test suite
- We are moving from svn to git for version control

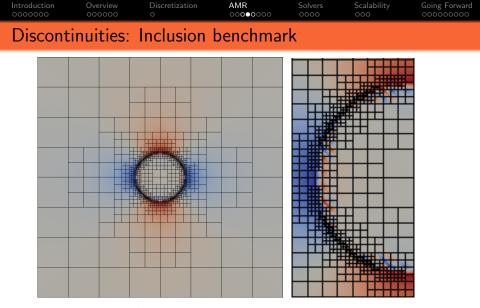
Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
0000000	000000	•	00000000	0000	000	000000000
Discretiz	ation					

- Time:
 - BDF2
 - 2nd order in time, unconditionally stable
- Space:
 - higher order finite elements
 - inf-sup stable element pair for velocity and pressure
 - s typically: $u:Q_2$, $p:Q_1$, $T:Q_2$
 - sonvergence in space: 3rd order (for u, T)
- Temperature stabilization:
 - entropy viscosity method
 - add diffusion where:
 - 1. solution is non-smooth
 - 2. local Peclet number $= \frac{LU}{\kappa}$ is large

- Put mesh resolution where needed
- Adapt mesh every couple of time steps

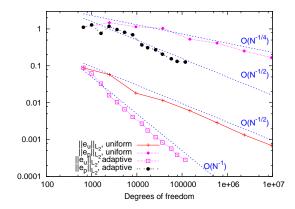
Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
0000000	000000	0	○●○○○○○○	0000	000	
Why AN	/IR?					


- Global fine resolution is too expensive:
 - * 1km resolution requires ~ 4 trillion unknowns
 - # 10km resolution requires ~ 4 billion unknowns
 - ø possible, but expensive (to compute, store, visualize, ...)
- Save 10x-100x over fixed fine resolution
- Way to cope with discontinuities in pressure/viscosity/density

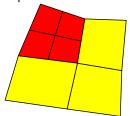

Introduction Overview Discretization AMR Solvers Scalability Going Forward

- # 10^8 viscosity jump, gives boundary layer in pressure
- Continuous (Q_1) vs. discontinuous (P_{-1}) pressure element:

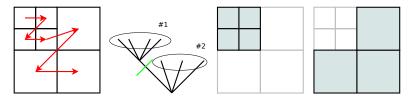
Element	Velocity	Pressure	Comment
$Q_2 \times Q_1$	h^3	$h^{1/2}$	
$Q_2 \times P_{-1}$	h^3	h^2	aligned
$Q_2 \times P_{-1}$	h^3	$h^{1/2}$	not aligned


 Discontinuous pressure space doesn't help in practice, refining into the layer does

- st disk with 10^3 viscosity jump, never aligned with cells
- pressure oscillations

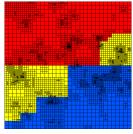


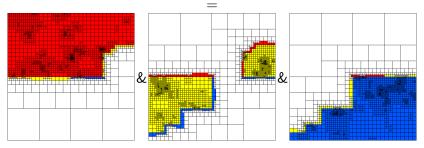
Adaptive refinement gives up to 100x smaller error


Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
0000000	000000	0	○○○○○●○○	0000	000	
How?						

- Start with coarse mesh
- Keep refining into 4 (8 in 3d) children where needed
- Need:
 - efficient, parallel datastructures
 - refinement criteria (temperature gradient-jumps, density jumps, ...)
 - fast parallel partitioning every couple of timesteps

- Space-filling curves (using p4est library)
- Partitioning is cheap and simple:


Only store local mesh on each core


Burstedde, Wilcox, and Ghattas.

p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees.

SIAM J. Sci. Comput., 33 no. 3 (2011), pages 1103-1133.

Color: owned by CPU id

Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
0000000	000000	0	00000000	●000	000	
Solvers						

- ***** In each timestep: coupled \mathbf{u}, p, T system
- IMPES scheme:
 - solve temperature and Stokes separately
 - extrapolate other quantities
 - unconditionally stable
 - in practice CFL due to mesh: $\Delta t = C \cdot \min \frac{h_k}{\|u\|_{\infty}}$
- Alternatively: iterate out non-linear coupling
- \rightsquigarrow need Stokes solver

Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
0000000	000000	0	00000000	0000	000	
Stokes S	olver					

Incompressible Stokes:

$$-\triangle \mathbf{u} + \nabla p = f,$$
$$\nabla \cdot \mathbf{u} = g$$

Weak form:

$$\begin{split} (\nabla \mathbf{u}, \nabla \mathbf{v}) - (p, \nabla \cdot \mathbf{v}) &= (f, \mathbf{v}), \\ - (\nabla \cdot \mathbf{u}, q) &= -(g, q) \end{split}$$

Linear system:

$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \end{pmatrix} = \begin{pmatrix} F \\ G \end{pmatrix}$$

Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
0000000	000000	0	00000000	00●0	000	
Stokes S	olver					

Solve linear system with (flexible) GMRES:

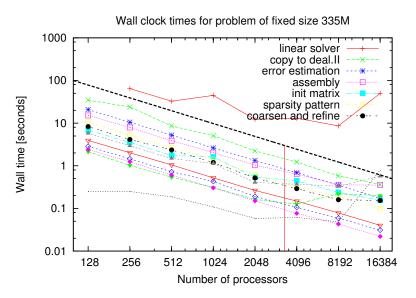
$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \end{pmatrix} = \begin{pmatrix} F \\ G \end{pmatrix} \qquad P = \begin{pmatrix} A & B^T \\ 0 & -S \end{pmatrix}$$

- * Right preconditioning with operator P^{-1} .
- Schur complement $S = BA^{-1}B^T$.
- * Applying P^{-1} requires application of A^{-1} and S^{-1}
 - Approximations are enough
 - A⁻¹: either one multigrid V-cycle, or CG preconditioned with V-Cycle. Algebraic multigrid (Trilinos ML)
 - * S^{-1} : approximated using pressure mass matrix M_p : $M_p = (\eta^{-1}\phi_i, \phi_j)$ using CG with block ILU.

Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
0000000	000000	0	00000000	000●	000	000000000
Compres	ssible Ca	ase				

- * Instead of $\nabla \cdot \mathbf{u} = 0$ we have $\nabla \cdot (\rho \mathbf{u}) = 0$
- * No longer symmetric to ∇p (makes preconditioning really difficult) and nonlinear
- Divide by ρ , then:

$$\frac{1}{\rho}\nabla\cdot(\rho\mathbf{u})=\nabla\cdot\mathbf{u}+\boxed{\frac{1}{\rho}\nabla\rho\cdot\mathbf{u}}$$


simplify:

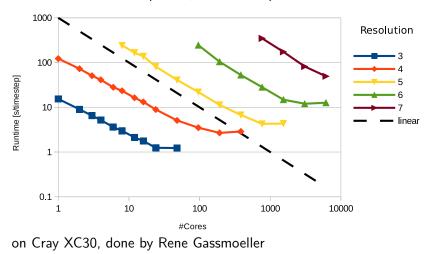
$$\frac{1}{\rho} \nabla \rho \cdot \mathbf{u} \approx \frac{1}{\rho} \frac{\partial \rho}{\partial p} \nabla p \cdot \mathbf{u} \approx \frac{1}{\rho} \frac{\partial \rho}{\partial p} \nabla p_s \cdot \mathbf{u} \approx \frac{1}{\rho} \frac{\partial \rho}{\partial p} \rho \mathbf{g} \cdot \mathbf{u}$$

compressibility $\frac{1}{\rho} \frac{\partial \rho}{\partial p}$; use static pressure to get $\nabla p \approx \nabla p_s \approx \rho \mathbf{g}$ So get back to the incompressible case:


$$\nabla \cdot \mathbf{u} = -\frac{1}{\rho^*} \frac{\partial \rho^*}{\partial p} \rho^* \mathbf{g} \cdot \mathbf{u}^*$$

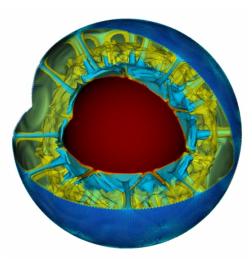
Introduction Overview Ocococo Overview Ocococo Overview Ococococo Overview Overview Ococococo Overview Overv

Test: Memory Consumption



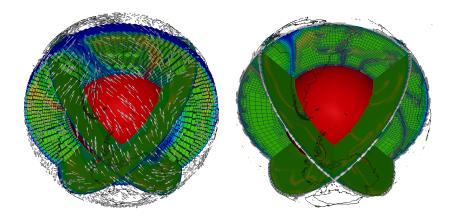
average and maximum memory consumption (VmPeak) 3D, weak scalability from 8 to 1000 processors with about 500.000 DoFs per processor (4 million up to 500 million total)

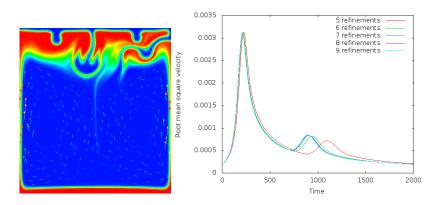
→ Constant memory usage with increasing
CPUs & problem size



Strong Scaling (3=100k, 7=300m DoFs)

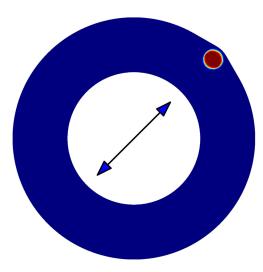
Adaptiv		moutation	_			
						•00000000
Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward


Adaptive 3d Computations

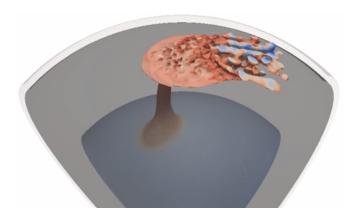

https://www.youtube.com/watch?v=j63MkEcORRw

CDIatas	Countin	m (Dama C		a 11)		
0000000	000000	0	00000000	0000	000	00000000
Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward

GPlates Coupling (Rene Gassmoeller)

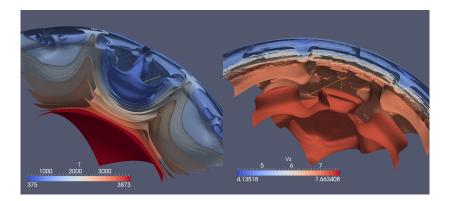


Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
0000000	000000	0	00000000	0000	000	00●000000
Benchm	arks: va	n Keken				



Introduction Overview Discretization AMR Solvers Scalability Going Forward 0000000

Free Surface Computations (Ian Rose)



https://www.youtube.com/watch?v=dG-ULmcBr1E

Mineral phases, Vs (Thomas Geenen)

Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward
0000000	000000	0	00000000	0000	000	○○○○○●○○
Future						


- Free surface computations
- Benchmarking efforts
- Nonlinear solvers
- Improvements: tracers, stabilization, compositional fields/levelsets
- Science questions

Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward		
0000000	000000	0	00000000	0000	000	○○○○○○●○		
Hackaton!								

ASPECT Hackathon: Texas A&M, May 14-23, 2014

development of ASPECT and work on your science problemstravel support through CIG (if US based)

Introduction	Overview	Discretization	AMR	Solvers	Scalability	Going Forward		
0000000	000000	0	00000000	0000	000	○○○○○○○○		
Conclusions								

Tutorials:

- TONIGHT, 7:30pm, room: Black Bear
- CIDER, July 2014, Santa Barbara, CA
- 🄹 SEDI, August 2014, Kanagawa, Japan
- GeoMod2014, September 2014, Potsdam, Germany

Hackathon: May 14-23, Texas A&M

Thanks for your attention!