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Introduction Overview Discretization AMR Solvers Scalability Going Forward

ASPECT Tutorial

Tonight, 7:30pm

Location: Black Bear

Introduction, then hands-on

Bring your laptop

Also: ASPECT office hours during poster sessions:
Tuesday/Wednesday, starting 3:30pm
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What?

ASPECT = Advanced Solver for Problems in Earth’s ConvecTion

Mantle convection using modern numerical methods
Open source, C++
Available at: http://aspect.dealii.org

Supported by NSF/CIG:

Kronbichler, Heister and Bangerth.
High Accuracy Mantle Convection Simulation through Modern Numerical
Methods.
Geophysical Journal International, 2012, 191, 12-29.
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Who?

Wolfgang Bangerth (Texas A&M)

Timo Heister (Clemson)

Contributors:
Markus Bürg, Juliane Dannberg,
René Gaßmöller, Thomas Geenen,
Ryan Grove, Eric Heien, Martin Kronbichler,
Elvira Mulyukova, Ian Rose, Cedric Thieulot
 Thanks!
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Numerical Challenges

Large range of scales in space and time

High spacial resolution required

Large problem sizes

Non-linear coupling of equations

Convection dominated

Local vs. global models

 need flexibility, accuracy, and scalability
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Modelling Challenges

Complicated material models

Uncertainties in parameters

Benchmarking is hard

Complex postprocessing

Coupling with other tools

 need usability, extensibility, easy experimentation

6



Introduction Overview Discretization AMR Solvers Scalability Going Forward

Social Challenges

Expertise required in

numerical methods
scientific computing
large scale software development
geodynamics
mineral physics? seismology?
...

Large project: direction? continuity?

need:

Documentation, tutorials
Training, workshops
Funding
Growing community is critical

 CIG is a big help here!
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Goals for ASPECT

Modern numerical methods:
adaptive mesh refinement, linear and nonlinear solvers,
higher-order discretizations, stabilization schemes

Usability and extensibility:
manual: 170+ pages, cookbooks
plugin architecture

Parallel scalability

Building on others’ work:
tested foundation, smaller codebase, automatic improvements

Community:
GPL, developed in the open,
many contributors, we want to help
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Timeline

2008-2011: deal.II based examples/experiments (Bangerth)

Oct 2011: Aspect development started

March 2012: release 0.1

April 2013: release 0.2:

compositional fields, passive tracers, GPlates, mesh refinement
criteria

May 2013: release 0.3 (bugfixes)

April 2014: release 1.0

a lot of new documentation
new examples (2d/3d shells, . . . )
dynamic topography
big performance improvements
compositional fields: reactions, boundary conditions, . . .
overhauled tracers
periodic meshes, nullspace removal, PETSc support
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Status

Lifetime of scientific codes:

1. experimentation with new numerical methods

2. working, useful for early adopters

3. useful tool for science applications (with limitations)

4. science driven development ←− ASPECT

5. maintenance

6. abandoned

 need YOUR science problems and feedback for future directions!
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Structure of ASPECT
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Features of deal.II

Open source project, C++
Maintainers: W. Bangerth, T. Heister, G. Kanschat
One of the most widely used finite element libraries:

∼ 400 papers using and citing deal.II, ∼ 600 downloads/month

Excellent documentation, examples
Features:

Many finite element types (continuous, DG, RT, . . . )
Higher order elements, hp adaptivity
Adaptive mesh refinement in 2d, 3d (quads/hexas)
Linear algebra: interfaces to PETSc and Trilinos
Parallel computing (MPI and/or multi-threading)

 my area

Bangerth, Heister and Kanschat.
deal.II Differential Equations Analysis Library, Technical Reference, 2012.
http://www.dealii.org.
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Equations

velocity u, pressure p, temperature T , advected quantities ci:

−∇ · [2ηD(u)] +∇p = ρg in Ω, (1)

∇ · (ρu) = 0 in Ω, (2)

ρCp

(
∂T

∂t
+ u · ∇T

)
−∇ · k∇T = F in Ω, (3)

∂ci
∂t

+ u · ∇ci = 0 in Ω (4)

strain rate D(u) = 1
2

(
∇u +∇uT

)
− 1

3(∇ · u)1

density ρ(p, T, c,x), viscosity η(u, p, T, c,x)

gravity g(x)

specific heat Cp(p, T, c,x), thermal conductivity k(p, T, c,x)

F : radioactive decay, friction heating, adiabatic compression,
latent heat, . . .
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Misc

Dimensionalized computations:

correct units and scalings
can still non-dimensionalize if desired

Geometries (2d and 3d):
shell, sphere, box, periodic domains, topography, ...

Interface with: GPlates, PerpleX, (more in progress)

Automated test suite

We are moving from svn to git for version control
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Discretization

Time:

BDF2
2nd order in time, unconditionally stable

Space:

higher order finite elements
inf-sup stable element pair for velocity and pressure
typically: u : Q2, p : Q1, T : Q2

convergence in space: 3rd order (for u, T )

Temperature stabilization:

entropy viscosity method
add diffusion where:
1. solution is non-smooth
2. local Peclet number = LU

κ is large
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Adaptive Mesh Refinement (AMR)

Put mesh resolution where needed

Adapt mesh every couple of time steps

16



Introduction Overview Discretization AMR Solvers Scalability Going Forward

Why AMR?

Global fine resolution is too expensive:

1km resolution requires ∼ 4 trillion unknowns
10km resolution requires ∼ 4 billion unknowns
possible, but expensive (to compute, store, visualize, ...)

Save 10x-100x over fixed fine resolution

Way to cope with discontinuities in pressure/viscosity/density
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Discontinuities: SolCx Benchmark

108 viscosity jump, gives boundary layer in pressure

Continuous (Q1) vs. discontinuous (P−1) pressure element:

Element Velocity Pressure Comment

Q2 ×Q1 h3 h1/2

Q2 × P−1 h3 h2 aligned

Q2 × P−1 h3 h1/2 not aligned

Discontinuous pressure space
doesn’t help in practice,
refining into the layer does
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Discontinuities: Inclusion benchmark

disk with 103 viscosity jump, never aligned with cells

pressure oscillations
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Discontinuities: Inclusion benchmark

 0.0001

 0.001

 0.01

 0.1

 1

 100  1000  10000  100000  1e+06  1e+07

Degrees of freedom

O(N-1)

O(N-1/2)

O(N-1/2)

O(N-1/4)

||eu||L2
, uniform

||ep||L2
, uniform

||eu||L2
, adaptive

||ep||L2
, adaptive

Adaptive refinement gives up to 100x smaller error
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How?

Start with coarse mesh

Keep refining into 4 (8 in 3d) children where needed

Need:

efficient, parallel datastructures
refinement criteria (temperature gradient-jumps, density
jumps, . . . )
fast parallel partitioning every couple of timesteps
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Space-Filling Curves

Space-filling curves (using p4est library)

Partitioning is cheap and simple:

#1

#2

Only store local mesh on each core

Burstedde, Wilcox, and Ghattas.
p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of
octrees.
SIAM J. Sci. Comput., 33 no. 3 (2011), pages 1103-1133.
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Example: Distributed Mesh Storage

=

& &

Color: owned by CPU id
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Solvers

In each timestep: coupled u, p, T system

IMPES scheme:

solve temperature and Stokes separately
extrapolate other quantities
unconditionally stable
in practice CFL due to mesh: 4t = C ·min hk

‖u‖∞

Alternatively: iterate out non-linear coupling

 need Stokes solver
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Stokes Solver

Incompressible Stokes:

−4u +∇p = f,

∇ · u = g

Weak form:

(∇u,∇v)− (p,∇ · v) = (f,v),

−(∇ · u, q) = −(g, q)

Linear system: A BT

B 0

u

p

 =

F
G


25



Introduction Overview Discretization AMR Solvers Scalability Going Forward

Stokes Solver

Solve linear system with (flexible) GMRES:A BT

B 0

u

p

 =

F
G

 P =

A BT

0 −S


Right preconditioning with operator P−1.

Schur complement S = BA−1BT .

Applying P−1 requires application of A−1 and S−1

Approximations are enough
A−1: either one multigrid V-cycle, or CG preconditioned with
V-Cycle. Algebraic multigrid (Trilinos ML)
S−1: approximated using pressure mass matrix Mp:
Mp = (η−1φi, φj) using CG with block ILU.
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Compressible Case

Instead of ∇ · u = 0 we have ∇ · (ρu) = 0

No longer symmetric to ∇p (makes preconditioning really
difficult) and nonlinear

Divide by ρ, then:

1

ρ
∇ · (ρu) = ∇ · u +

1

ρ
∇ρ · u

simplify:

1

ρ
∇ρ · u ≈ 1

ρ

∂ρ

∂p
∇p · u ≈ 1

ρ

∂ρ

∂p
∇ps · u ≈

1

ρ

∂ρ

∂p
ρg · u

compressibility 1
ρ
∂ρ
∂p ; use static pressure to get ∇p ≈ ∇ps ≈ ρg

So get back to the incompressible case:

∇ · u = − 1

ρ∗
∂ρ∗

∂p
ρ∗g · u∗
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Strong Scaling: 2d Adaptive Poisson Problem
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linear solver
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Test: Memory Consumption
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average and maximum memory consumption (VmPeak)
3D, weak scalability from 8 to 1000 processors with about 500.000

DoFs per processor (4 million up to 500 million total)

 Constant memory usage with increasing
# CPUs & problem size
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ASPECT

on Cray XC30, done by Rene Gassmoeller
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Adaptive 3d Computations

https://www.youtube.com/watch?v=j63MkEc0RRw
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GPlates Coupling (Rene Gassmoeller)
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Benchmarks: van Keken
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Free Surface Computations (Ian Rose)
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Thermochemical convection (Juliane Dannberg)

https://www.youtube.com/watch?v=dG-ULmcBr1E
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Mineral phases, Vs (Thomas Geenen)
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Future

Free surface computations

Benchmarking efforts

Nonlinear solvers

Improvements: tracers, stabilization, compositional
fields/levelsets

Science questions
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Hackaton!

ASPECT Hackathon: Texas A&M, May 14-23, 2014

development of ASPECT and work on your science problems
travel support through CIG (if US based)
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Conclusions

Tutorials:

TONIGHT, 7:30pm, room: Black Bear
CIDER, July 2014, Santa Barbara, CA
SEDI, August 2014, Kanagawa, Japan
GeoMod2014, September 2014, Potsdam, Germany

Hackathon: May 14-23, Texas A&M

Thanks for your attention!
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