

Differentiation Processes in the Early Earth and their Impact on the Evolution of Mantle Convection

U.. Hansen , C. Maas, A. Möller, S. Dude University of Münster, Germany

Outline

- □ 1) Basics:
 - Magma Ocean
 - Crystallization
 - Basic Equations
 - Numerical Model
- 2) First Results:
 - Influence of rotation on:
 - Crystal settling
 - Dependence on density
 - Summary & Implications

Magma Ocean on Earth

- 4
- □ ≈4.5 billion years ago
 □ Developed due to giant impact
- Early Magma Ocean
 ≈1000 km deep
 Small viscosity
 Very strong convection
 Fast earth rotation (2-5 h)
- Metal and silicate separate
 → core formation
- After core formation
 - $\square \rightarrow crystallization$

Silicate Crystals:

- Fractional crystallization?
- \rightarrow Strongly differentiated mantle
- Equilibrium crystallization?
- \rightarrow Undifferentiated mantle
- Influence of rotation?
- Implications for the earth today
 Onset of Plate tectonics
 Mantle development until today
 - Mantle differentiation?

Numerical Model

6

Fluid model: (Schmalzl and Hansen, 2000)
 3D - Finite Volume
 rotation axis can be tilted

Particle model:

(Verhoeven & Schmalzl, 2009; Möller and Hansen, 2013)

- Discrete Element method
- Spherical shape
- Collision algorithm
- Forces: Gravity, Coriolis, Friction

The Fluid Model

The Linking- Cell Algorithm

	1		3	
	(1,4)	(2,4)	(0,4)	(4,4)
		6	8	
	(1,3)	(2.3)	(3.3)	(4,3)
		9.		4
	(1.2)	(2.2)	(3.2)	(4.2)
v	,			
1	(1.1)	(2.1)	(3.1)	a n 🔼
	<u>, , , , , , , , , , , , , , , , , , , </u>	(e,) 	[(a, 1)	(+0)

The Discrete Element Method

Equations

- Continuity equation:
- Heat transport equation:
- Momentum equation:

$$\frac{1}{Pr}\left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla)\vec{v}\right) = -\nabla p - \sqrt{Ta}(\vec{e_{\omega}} \times \vec{v}) + \nabla^2 \vec{v} + Ra(T - BC)\vec{e_z}$$

$$\nabla \cdot \vec{v} = 0$$
$$\frac{\partial T}{\partial t} + (\vec{v} \cdot \nabla) T = \nabla^2 T$$

Equations

- Continuity equation:
- Heat transport equation:
- Momentum equation:

$$V \cdot v = 0$$
$$\frac{\partial T}{\partial t} + (\vec{v} \cdot \nabla) T = \nabla^2 T$$

$$\frac{1}{\Pr} \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} \right) = -\nabla p - \sqrt{Ta} (\vec{e_{\omega}} \times \vec{v}) + \nabla^2 \vec{v} + Ra(T - BC) \vec{e_z}$$

Parameter:

Rayleigh:
$$Ra = \frac{\alpha g \Delta T d^3}{\kappa v_0} \rightarrow Ra = 10^8$$
 Taylor: $Ta = \frac{4\Omega^2 d^4}{v_0^2} \rightarrow 0 \leq Ta \leq 10^{10}$
 Prandtl: $Pr = \frac{v_0}{\kappa} \rightarrow Pr = 1$
 Buoyancy: $B = \frac{(\rho_p - \rho_{fl})}{\rho_{fl} \alpha \Delta T} \rightarrow B_{silicat} \approx 2.5$

• Rossby:
$$Ro = \sqrt{\frac{Ra}{PrTa}} \rightarrow 0.1 \le Ro \le \infty$$

Boundary Conditions

14 2.1) Polar Scenario

time averg. particle fraction in upper 2/3 (in %) At the Pole 🛏 ∞ 0,1 Rossby-number

 $Ro = \infty$

17

 $Ro = \infty$ Ro = 1

18

$Ro = \infty$ Ro = 1 Ro = 0,32

Ro = 0,1

19

 $Ro = \infty$ Ro = 1 Ro = 0,32

Taylor Proudman Theorem

$$\frac{\partial u}{\partial t} + \mathbf{v} \nabla \mathbf{u} = -\frac{1}{\rho} \nabla \mathbf{P} - 2\mathbf{\Omega} \times u + \mathbf{v} \nabla^2 \mathbf{v}$$

$$2\mathbf{\Omega} \times \mathbf{u} = -\frac{1}{\rho} \nabla \mathbf{P}$$

Neglecting viscous and assuming Rotation dominates inertia

$$\nabla \times (\mathbf{\Omega} \times u) = 0$$

 $\mathbf{\Omega} \bullet \nabla u - u \bullet \nabla \mathbf{\Omega} + u(\nabla \bullet \mathbf{\Omega}) - \mathbf{\Omega}(\nabla \bullet u) = 0$

Taylor – Proudman Theorem

Since Ω is independent on position , and for an

incompressible fluid $\nabla \bullet u$ holds, the statement

$$\mathbf{\Omega} \bullet \nabla u - u \bullet \nabla \mathbf{\Omega} + u(\nabla \bullet \mathbf{\Omega}) - \mathbf{\Omega}(\nabla \bullet u) = 0$$

Rotation Axes

GEOPHYSIK WWU MÜNSTER

reduces to $\mathbf{\Omega} ullet \nabla \mathbf{u} = 0$

For
$$\mathbf{\Omega}$$
 in z – direction $\frac{\partial u}{\partial z} = \mathbf{0} \Rightarrow \frac{\partial u}{\partial z} = 0$

No Variation of velocity in direction paralle to Rotational axis - Taylor – Proudman theorem

Taylor-Proudman 3

23

 \mathcal{V}_Z :

Taylor-Proudman Theorem: Vertical velocity

-¢4934 -5049

 $Ro = \infty$:

Ro = 0,1:

80

24

Influence of density: Pole

particle density

Influence of density: Pole

- - Light particle settle last
 - High density: small

28

time averg. particle fraction in upper 2/3 (in %)

Rossby number

29

Ro = 1y-z plane

Ro = 1y-z plane

$$Ro = 0,45$$

y-z plane

31

Ro = 1y-z plane

Ro = 0,45y-z plane Ro = 0,14x-z plane

32

Ro = 0,45

Ro = 0,1

34

 $v_{y^{:}}$

Shear flow:

$$Ro = 0,1$$

35

- Coriolis force
 - Prop. & perpendicular to local velocity
- □ Shear flow:
 - $\square \rightarrow high y-velocity$

Influence of density: Equator

36

Influence of density: Equator

37

z-coordinate

Möller & Hansen, 2013

Summary & Implications

38

- Crystal settling depends on latitude & rotational strength
- Irregular crystallization:
 - At the Pole:
 - Fast crystal settling
 - Differentiated mantle
 - At the Equator:
 - Settling depends on density
 - Crystallization begins at mid-depth
 - → Magma Ocean at CMB (Labrosse et al. 2007)

Outlook

- Geometry: Spherical shell
- Boundary conditions
- Dependence of crystal settling on crystal density
- Two different mineral phases

Heating a stably stratified mantle from below - after core formation

Höink et al (2005)

25.05.2014

40

Basics of Double-diffusive convection

Lewis number

Density: ρ $\rho = \rho_0 (1 - \alpha T + \beta C)$

T: Temperature C: Concentration

Fluid parcel with Thermal diffusivity k_T and Compositional diffusivity k_C

Driving – and Restoring Forces are not in phase

Diffusive Regime: **Fast** diffusing component (Temperature) Is **driving** force. **Slowly** diffusing component (Salinity) Is **restoring** force

Finger Regime:: **Fast** diffusing component (Temperature) Is **restoring** force. **Slowly** diffusing component (Salinity) Is **driving** force

Lewis number,

 κ_{T} thermal diffusivity κ_{C} compositional diffusivity

 $Ra_{C} = \frac{\beta g \Delta C d^{3}}{\kappa_{T} \nu}$

Thermal Rayleigh number

Compositional Rayleigh number⁴²

From gradual to layered (stair-case) stratification

The Onset of Convection in a doublydiffusive system

GEOPHYSIK WWU MÜNSTER

The Onset of Double-diffusive convection

45

Composition

Doublr-diffusive Convection in a Sphere

A Simple Mantle Model

$$Ra_{T} = 10^{6}$$
,
 $Ra_{C} = 1.5 \times 10^{6}$
 $Le = 100$
 $Vt = 10^{4}$

Temperature and composition Fixed - Dirichlet conditions

A Simple mantle Model 3

Late phase Transition from layered to nonlayerrf flow:

Temperature

Stably stratified, heated from below and cooled GEOPHYSIK from above, Bingham rheology

 $Ra_{T} = 10^{5}, Ra_{C} = 1.5 \times 10^{5}, VT = 10^{6}$

25.05.2014

Onset of Plate Tectonics

52

Temperature

A more extreme case

Temperature

$$Ra_T = 10^6$$
, $Ra_C = 1.5 \times 10^6$, $Vt = 10^6$, $V_p = 50$

A more extreme case 2

Composition

Summary

A stably stratified compositional gradient, overlying a heat reservoir may resemble the situation of the Early Earth, after Core-formation.

Under such conditions, in a wide parameter range, a layered flow pattern develops. The range includes temperature- and pressure dependence of the viscosity, internal heat generation and temporally decaying heat sources.

The layer formation is observed in 2D and 3D Cartesian geometry as well as in fully spherical domains. The results indicate that the formation of layers and thus of discontinuities are a typical feature resulting from planetary