

SCOTT D. KING
Department of Geosciences
Virginia Tech, Blacksburg, VA

Goal:

- compare and contrast convection and thermal history modeling approaches
- add time-variable terms to convection model step by step
- discuss impact

- thermal history modeling
 - one dimensional

- convection modeling
 - Two or three dimensional

- thermal history modeling
 - one dimensional
 - only solves conservation of energy

- convection modeling
 - two or three dimensional
 - solves conservation of mass, momentum and energy

- thermal history modeling
 - one dimensional
 - only solves conservation of energy
 - requires rheology & parameterization
 (e.g., Nusselt-Rayleigh number relationship)

- convection modeling
 - two or three dimensional
 - solves conservation of mass, momentum and energy
 - requires rheology and various thermodynamic parameters

- thermal history modeling
 - one dimensional
 - only solves conservation of energy
 - requires parameterization
 (e.g., Nusselt number Rayleigh number relationship)
 - one value of temperature for entire mantle

- convection modeling
 - two or three dimensional
 - solves conservation of mass, momentum and energy
 - requires rheology and various thermodynamic parameters
 - 2D or 3D temperature structure

- thermal history modeling
 - one dimensional
 - only solves conservation of energy
 - requires parameterization (e.g., Nusselt-Rayleigh relationship)
 - one value of temperature for entire mantle
 - long history of including the effect of decaying heat sources, decreasing CMB temperature, variable initial conditions

- convection modeling
 - two or three dimensional
 - solves conservation of mass, momentum and energy
 - requires rheology and various thermodynamic parameters
 - 2D or 3D temperature structure
 - historically uses constant CMB temperature, uniform heating rate, conductive initial condition

- thermal history modeling
 - one dimensional
 - only solves conservation of energy
 - requires parameterization

 Norselt

 har Payleigh

 lat

 nship)
 - Ine y lue of ter Jer; ure for entire mantle
 - long history of including the effect of decaying heat sources, decreasing CMB temperature, variable initial conditions

- convection modeling
 - two or three dimensional
 - solves conservation of mass, momentum and energy
 - requires rheology and various
 - ten era retris
 - historically uses constant CMB temperature, uniform heating rate, conductive initial condition

Why Thermal History Calculations?

Scientists from RAND Corp. created this model to illustrate how a 'home computer' could look in 2004. However the needed technology will not be economically feasible for the average home. (Actually photo is a hoax!)

Thermal History Calculation

Integrate the energy equation over the whole mantle

$$Mc\frac{\partial T}{\partial t} = MH - Aq$$

Allow H, to decay with time

$$H = H_0 e^{-\lambda t}$$

M is the mass of Earth
C is the specific heat
H is the concentration of HPE
A is the surface area
q is the surface heat flux

Parameterize heat flux out the top of the mantle as

$$q = \frac{k(T - T_s)}{d} \left(\frac{Ra}{Ra_{cr}}\right)^{\beta}$$

Thermal History Calculation

$$\frac{\partial T}{\partial t} = f_1 e^{-\lambda t} - f_2 (T - T_s)^{1+\beta} \exp\left(\frac{-\beta A_0}{T}\right)$$

$$f_1 = H_0/c$$

$$f_2 = \frac{Ak}{Mcd} \left(\frac{\alpha g d^3}{\kappa \nu_0 Ra_{cr}} \right)^{\beta}$$

The result is an ode with a few adjustable parameters: f_1 , f_2 , A_0 , β , T_s

Nusselt Rayleigh Relationship; The β Saga

- Nu = 0.294 Ra^{0.333} c.f. Turcotte and Schubert
- Christensen xxx
- Nu = xxx Ra xxx Gurnis, 1989
- Moresi and Solomatov, ...

So if not thermal history calculations, then how slow is slow?

10 steps write output at final step includes all phases of solution default convergence params

Grid	Partition	Total Cores	Wall time (sec)	MG levels	nodes
25x25x25	$\frac{1 \text{ ar ordon}}{2 \text{x} 2 \text{x} 2}$	96	25	3	0.17M
25x25x25 25x25x25	2x2x2	96	90	_	0.17M
				cg	
49x49x49	2x2x2	96	67	4	1.35M
49x49x49	2x2x2	96	763	cg	1.35M
49x49x49	3x3x3	324	8	4	1.35M
49x49x49	3x3x3	324	XXX	cg	1.35M
97x97x97	2x2x2	96	368	5	10.7M †
97x97x97	2x2x2	96	456	5	10.7M
97x97x97	2x2x2	96	443	4	10.7M
97x97x97	2x2x2	96	1,081	3	10.7M
97x97x97	2x2x2	96	1,537	2	10.7M
97x97x97	2x2x2	96	$4{,}101$	cg	10.7M
97x97x97	3x3x3	324	228	5	10.7M
145x145x145	2x2x2	96	1,921	4	36.1M
145x145x145	3x3x3	324	752	4	36.1M
145x145x145	4x4x2	384	28,336	3	36.1M
145x145x145	4x4x3	576		3	36.1M
193x193x193	3x3x3	324	1,471	6	85.4M
193x193x193	4x4x2	384	1,690	5	85.4M
193x193x193	4x4x3	576	1,097	5	85.4M
241x241x241	4x4x3	576		5	
241x241x241	4x4x4	768		5	

†write to /tmp

Table 1: These scalability tests were run using CitcomS 3.2.0 with default configuration on hess.arc.vt.edu. The mesh for these tests is a sphere with 12 caps. Each cap has n by n by n nodes. The model is run for 11 time steps. The result reported is the total wall clock time.

97 × 97 × 97 = 30 km

Grid	Partition	Total Cores	Wall time (sec)	MG levels	nodes
97x97x97	2x2x2	96	368	5	10.7M
97x97x97	2x2x2	96	456	5	10.7M
97x97x97	2x2x2	96	443	4	10.7M
97x97x97	2x2x2	96	1,081	3	10.7M
97x97x97	2x2x2	96	$1,\!537$	2	10.7M
97x97x97	2x2x2	96	$4,\!101$	cg	10.7M
97x97x97	3x3x3	324	228	5	10.7M

write to local scratch vs. write to mounted disk

Grid	Partition	Total Cores	Wall time (sec)	MG levels	nodes
97x97x97	3x3x3	324	228	5	10.7M
145x145x145	2x2x2	96	$1,\!921$	4	36.1M
145x145x145	3x3x3	324	752	4	36.1M
145x145x145	4x4x2	384	$28,\!336$	3	36.1M
145x145x145	4x4x3	576		3	36.1M
193x193x193	3x3x3	324	$1,\!471$	6	85.4M
193x193x193	4x4x2	384	$1,\!690$	5	85.4M
193x193x193	4x4x3	576	$1,\!097$	5	85.4M
241x241x241	4x4x3	576		5	
241x241x241	4x4x4	768		5	

Grid	Partition	Total Cores	Wall time (sec)	MG levels	nodes
97x97x97	3x3x3	324	228	5	10.7M
145x145x145	2x2x2	96	1,921	4	36.1M
145x145x145	3x3x3	324	752	4	36.1M
145x145x145	4x4x2	384	$28,\!336$	3	36.1M
145x145x145	4x4x3	576		3	36.1M
193x193x193	3x3x3	324	$1,\!471$	6	85.4M
193x193x193	4x4x2	384	1,690	5	85.4M
193x193x193	4x4x3	576	$1,\!097$	5	85.4M
241x241x241	4x4x3	576		5	
241x241x241	4x4x4	768		5	

Grid Comparisons

fixed 96 cores

fixed 324 cores

Grid Comparisons

Yellow = super speedup

Why? Cube Sphere + 8 cores per node + fixed number of available nodes

- 144 x 144 x 144 cube into 4 x 4 x 2 blocks gives 36 x 36 x 72
- 36 x 36 x 72 block and only be divided twice more to get even multi-grid levels: 18 x 18 x 36 and 9 x 9 x 18

Grid Lessons Learned

- The number of elements per core should be in the 32cubed to 64-cubed range.
- You are often better off (even in wall clock time) having fewer cores and more multigrid levels as opposed to having more cores and too few MG levels.
- A more general lesson: with iterative solvers, the question of best performance is more complex than with traditional direct approaches

Grid

- For this work I settled on 97 x 97 x 97 (30 km grid spacing) both because of time required for solutions and disk space issues
- I tried some 129 x 129 x 129 cases and I don't see significant differences

typical thermal history curve

From Schubert, Turcotte and Olson, 2001 Figure 13.1

3D spherical convection

- Bousinessq, which means:
 - constant coef thermal expansion, Cp, density
 - no adiabatic heating/gradient
 - no viscous shear heating
- rheology strong function of temperature (Hirth and Kohlstedt, 2003)
- factor of 30 increase in viscosity at 660
- start from moderately hot mantle with high frequency perturbation

add decreasing CMB temperature

add decaying HPE

mantle hotter than core!!

A brief (albeit biased*) history of U estimates in BSE:

- Urey (56) 16 ppb
- Wasserburg et al (63) 33 ppb
- Ganapathy & Anders (74) 18 ppb
- * Ringwood (75) 20 ppb
- Jagoutz et al (79) 26 pp
- Schubert et al (80) 31 ppb
- * Davies (80) 12-23 ppb
- Wanke (81) 21 ppb

- Turcotte & Schubert (82;03) 31 ppb
- Hart & Zindler (86) 20.8 ppb
- McDonough & Sun (95) 20 ppb ±
 20%
- Allegre et al (95) 21 ppb
- Palme & O'Neill (03) 22 ppb ± 15%
- Lyubetskaya & Korenaga (05) 17ppb ± 17%
- O'Neill & Palme (08) 10 ppb
- Javoy et al (10) 12 ppb

add imposed plates

Temperature at 650 km at 2.7 Ga

Farallon Slab Hemisphere

Western Pacific Hemisphere

compare

observations

- cmb temperature plays little role -- 90% of surface heat flow is from radiogenic heating and/or secular cooling, you have to do a lot to the 10% to get a noticeable effect
- must have a mobile lid -- stagnant lid convection just gets/stays too hot (what was Earth's lithosphere like before plate tectonics?)
- where are the plumes? don't yet have a high enough starting temperature-> low enough viscosity for early earth-> not enough early mantle cooling

add mobile lithosphere

Still a work in progress...

In God's Kitchen

