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Performance benchmark (AGU 2014)
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For this test case (NR = 512, Lmax = 255):

At given number of cores, XSHELLS is at least 3 times faster.

For shortest elapsed time, XSHELLS needs 8 times less ressources.
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Introduction

The goal was to use spherical harmonics to time-step Navier-Stokes and
related equations in spherical geometry.

Why Spherical Harmonics ?

Advantage of spectral methods

Don’t need to solve for magnetic field in the insulator.

Strongly reduces the number of variables to solve for.

Spherical Harmonics Transform (SHT) is the bottleneck

Is it possible to use fast algorithm ?

Is it possible to otherwise improve the SHT ?
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Comparison of Spherical Harmonic transform libraries
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Fast transforms are still much slower than carefully optimized
Gauss-Legendre algorithm.

They even stop working at some point because of memory
requirements.
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SHTns: outstanding features

Ok, we know it’s blazingly fast, but why ?

Matrix-free algorithm: computing recurrence on-the-fly is faster
than reading from memory [unless matrix-matrix product is used], and you
save a lot of memory too.

Hand vectorized, yet easily portable (currently supports Intel SSE2,
AVX, AVX2+FMA, MIC ; IBM Blue Gene/Q)

SHTns perf scales with microarchitecture: x2 w/SSE2, x4 w/AVX, x8
w/AVX2+FMA. . . x16 w/AVX512 ?
It also means the gap between classic implementations and SHTns will increase.

Efficient OpenMP parallelization (not yet used by XSHELLS)

Reach 80% to 90% of peak performance on Intel SandyBridge.

N. Schaeffer, Efficient Spherical Harmonic Transforms aimed at pseudo-spectral numerical

simulations, Gcubed, 2013.
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SHTns: other interesting features

both scalar and vector transforms.

accurate up to spherical harmonic degree ` = 16383 (at least).

SHT at fixed m (without fft, aka Legendre transform).

spatial data can be stored in latitude-major or longitude-major arrays.

various normalization conventions.

can be used from Fortran, c/c++, and Python programs.

free software : https://bitbucket.org/nschaeff/shtns
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On-the-fly vs Precomputed matrix
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Better performance for big sizes or large vector instructions (like
AVX).

Low memory requirement: the same as the memory needed to store a
spherical harmonic decomposition.
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SHTns: short summary

Matrix-Vector product is too slow.

Instead of reading a big matrix from memory, recomputing the
elements when needed can be a lot faster.

SHTns squeezes every bit of computing power of nowadays
computers.

With larger vector units, the advantage fo SHTns will increase.

I wonder if transforming many shells together using matrix-matrix
product could be competitive?

Note that on Xeon Phi, the FFT is now the bottleneck, not the
Legendre transform!

https://bitbucket.org/nschaeff/shtns

N. Schaeffer, Efficient Spherical Harmonic Transforms aimed at pseudo-spectral numerical

simulations, Gcubed, 2013.
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MHD forced by Boussinesq convection

XSHELLS time-steps the following equations:

∂tu + (2Ω0 +∇× u)× u = −∇p∗ + ν∆u + (∇× b)× b + c∇Φ0

∂tb = ∇× (u× b) + η∆b

∂tc + u.∇(c + C0) = κ∆c

∇u = 0 ∇.b = 0

Spherical shell geometry

Fields expanded using u = ∇× (T r) +∇×∇× (Pr)

Spherical Harmonic expansion, with transforms done by SHTns

Finite differences in radius

Semi-implicit scheme: diffusive terms are time-stepped using
Cranck-Nicholson while other terms are treated explicitly with
Adams-Bashforth scheme.
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The XSHELLS code

hybrid MPI/OpenMP parallelization

Increase Data Locality: work shell by shell for spatial terms (do not
compute the whole spatial fields at once: lower memory required and
faster).

Distribute shells to MPI processes (at least 2 shells/process).

No transposition required (no MPI Alltoall()), communication
with nearest neighbor only.

Use OpenMP within these processes (currently up to 1 thread/shell)
(but OpenMP in the angular directions is planned for near future.)

max resolution so far: 2688 x 1344 x 1024 @ 1024 cores (5.2 sec/step)

For reference:
1995: Glatzmaier and Roberts, 64 x 32 x 49 (the pioneers, with hyperviscosity)
2008: Kageyama et. al., 2048 x 1024 x 511 (Yin-Yang grid, E=1e-6, Re=700, Pm=1)
2009: Sakuraba and Roberts, 768 x 384 x 160 (Chebychev E=2e-6, Re=650, Pm=0.2)

2014: Hotta et. al., 4096 x 2048 x 512 (solar dynamo, Yin-Yang grid)
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Why is XSHELLS so fast? – non-linear terms

Design choice: optimize the computation of non-linear terms first.

Trick 1: Use SHTns

J. Aubert plugged SHTns into Parody and observed a performance
increase by a factor of about 2 for the whole code.
⇒ lower memory required, faster, ready for future architectures.

Trick 2: Increase Data Locality

Work shell by shell when computing spatial terms (do not compute the
whole spatial fields at once).
⇒ lower memory required and significantly faster.
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Why is XSHELLS so fast? – linear solver

The linear solver is computationally very cheap. It should deal with the
data as it is arranged for the non-linear terms to be most efficient.

Trick 3: Avoid transpositions and large copies

Transposition is always slow (with and without MPI communications)

Copying large amounts of data can also be quite slow.

Problem: the forward (backward) substitutions depend on the data
computed by previous (next) processes.
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Why is XSHELLS so fast? – blocked linear solver

Solution to data dependency in the linear solver: split shells into
independent blocks.

t

t
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rank k

rank k+1

rank k+2

compute

compute

compute
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Trick 4: Use self-tuning

The optimal number of blocks is system dependent: trade off between
wait time and transfer overhead.

Find the best number of blocks at startup.

30 folds observed performance increase compared to naive solver.
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The model

thermochemical convection (codensity, 75% chemical driving, Aubert
et al 2009);

including some secular cooling effect;

no-slip, and fixed flux homogeneous boundary conditions

high rotation rate, low viscosity

strong forcing (more than 4000 times critical)

with:

1 Ekman number E = ν/D2Ω

2 Rayleigh number Ra = ∆TαgD3/κν

3 Magnetic prandtl number Pm = νµ0σ

4 (Thermal) Prandtl number Pr = 1.
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The simulations

The idea

Keep super-criticality and Rm fixed.

go to more Earth-like A and Pm.
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Pm = 0.4, Ra = 6 1010

⇒ A = 1.5 Fν = 47%

jump 1: E = 10−6,
Pm = 0.2, Ra = 1.2 1012

⇒ A = 0.61 Fν = 24%

jump 2: E = 10−7,
Pm = 0.1, Ra = 2.4 1013

⇒ A = 0.45 Fν = 17%
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A selection of geodynamo simulations
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Surface of the discs is proportional to the magnetic Reynolds number (i.e.
how strong the magnetic field generation is)
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Energy vs Time
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Jump 2 ran for 1.5% of a magnetic diffusion time, and it took about 7 months to

compute on 512 cores, spending 2.5 million core hours.
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Snapshot: initial Uφ (E = 10−5, Pm = 0.4, A = 1.5)

NR = 224, Lmax = 191
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Snapshot: jump 1 Uφ (E = 10−6, Pm = 0.2, A = 0.6)

NR = 512, Lmax = 479
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Snapshot: jump 2 Uφ (E = 10−7, Pm = 0.1, A = 0.45)

NR = 1024, Lmax = 893
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Torsional Afvén Waves in the core

Alfvén waves constrained
by rotation can only
propagate as geostrophic
cylinders.

Their speed is related to
the integral over z and φ
of B2

s .

Measuring their speed
gives information about
the magnetic field inside
the core.
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Jump 1: Fourier Analysis of axisymmetric fields

We perform an FFT of the axisymmetric component over about 3
Alfvén times (defined with Brms).

Modal analysis similar to Figueroa et al (2013)
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A. Figueroa et al, Modes and instabilities in magnetized spherical Couette flow, JFM, 2013.
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Jump 1: Fourier modes of axisymmetric Uφ and Bφ
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Jump 1: Fourier modes: z-averages and standard deviation

We quantify the z-invariance of the magnetic and velocity fields for
mode 0 (fA = 0), mode 2 (fA = 0.77), and mode 6 (fA = 2.3).
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Evidence for geostrophy of intermediate frequency modes
(0.5 < T < 10 years, axisymmetric)
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Jump 2: spectra
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Magnetic field dominates deep in the core but not near the surface.

Velocity spectrum nearly flat at the surface but increasing deep down.
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Jump 2: z-averaged energy densities

z-averaged equatorial energy densities, left: < U2
eq >, right: < B2

eq >.
E = 10−7, Pm = 0.1, Rm = 600, A ∼ 0.45.
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Jump 2: Temperature field

Mean temperature of each shell has been removed.
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Force balance vs frequency

Method

Fields up to lmax=30 stored periodically for significant time-spans.

Post-processing of these provide force balances at different
time-scales.

Boundary layers removed.

Problem: large storage requirement for full fields (only up to lmax=30
here)
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Force balance vs frequency (large scales only)
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Geostrophic balance removed by curl.

For low frequency: Coriolis-Buoyancy balance.

For high frequency: Coriolis-inertia balance (intertial waves).

Laplace force overtakes Buoyancy at high frequency.

contribution of small scales ignored.
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High resolution simulation summary

Turbulence in the Earth’s core (dynamo magnetic field + strong rotation)
is not well understood.

As we go toward more turbulent simulations

Velocity field peaks at smaller and smaller scales !

Torsional waves are excited.

Improved z-invariance.

Open questions:

Can we realy forget about u∇u ?

How does the magnetic field affect the flow ?

The data is available if someone wants to look.
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Concluding remarks

XSHELLS:

Very high raw performance.

Scaling may be more limited than other approaches, but there is room
for improvement.

Expect to reach good scaling up to 8 to 16 threads/shell for large
cases by June 2015.

Free software: https://bitbucket.org/nschaeff/xshells

General conclusions:

SHTns should be tried in other codes.

Alternatively, there is libsharp (spin-weighted spherical harmonics).

Don’t rely too much on the compiler for code vectorization.

Don’t underestimate the cost of reading/writing to memory.

https://bitbucket.org/nschaeff/shtns

http://sourceforge.net/projects/libsharp/
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Some numbers

definition initial jump 1 jump 2 Earth’s core
Nr 224 512 1024
Lmax 191 479 893
Ek ν/D2Ω 10−5 10−6 10−7 3 10−15

Ra ∆TαgD3/κν 6 1010 1.2 1012 2.4 1013 1030 ?
Pm ν/η 0.4 0.2 0.1 3 10−5

Pr ν/κ 1 1 1 0.1 - 10
Rm UD/η 700 650 600 2000 ?
A

√
µρU/B 1.5 0.6 0.45 0.01

Re UD/ν 1770 3240 5960 2 108

Ro U/DΩ 0.018 3.2 10−3 6 10−4 3 10−6

Le B/
√
µρDΩ 0.012 5 10−3 1.3 10−3 10−4

Λ B2/ηΩ 5.8 5.7 1.7 1 - 10
Fν Dν/(Dη + Dν) 47% 24% 17% ?
Fη Dη/(Dη + Dν) 53% 76% 83% ?

Table 1: Various input and output parameters of our simulations, where D is the
shell thickness, U the rms velocity and B the rms magnetic field.
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SHTns Scalar Synthesis time comparison

size (`max ) cpu 16c mic mic offload tesla m2090 tesla m2090 (2q)
511 1.4 1.5 4.25 2.46

1023 8.9 7.2 16.3 19.3 11.0
2047 62 74.2 117 104.3 68.5
4095 446 296 885 709 547
8191 2050 6850

Table 2: Time in milliseconds to complete a spherical harmonic synthesis on
various devices and for various sizes. cpu 16c is a 16 core 2.7GHz SandyBridge
platform. tesla m2090 with OpenCL (synthesis only) includes the memory
transfer (30% to 40%). 2q: using transfer compute overlap (2 opencl queues).
Note that for 511 and 1023, the best times were obtained with ”transposed” fft
on the mic.

MIC offload is the slowest (so far, could probably be better)

MIC native is often fastest (strongly depends on data layout and fft
performance !)
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