

HEX Meshing

Full complexity

Exponential ACCURACY of high-order methods

Suitable for implementation in parallel architectures
Mechanical proprieties can vary inside each element
Low Number of elements for wavelength

EFFCENCY!!!! (Diagonal Mass Matrix - Explicit time scheme)

Full complexity

Exponential ACC

Suitable for imple
Mechanical prof
Low Number of

EFFCENOY!!!! (Diagonal Mass Matrix - Explicit time scheme)

MESH: features

$\Delta h=v_{\min } T_{o} \frac{N+1}{f(N)}$

$$
\Delta t<C_{\max } \frac{v_{\min }}{v_{\max }} T_{o} \frac{N+1}{f(N)}
$$

Seismic velocity can vary inside the volume

UNSTRUCTURED - ANSOTROPIC - CONFORMAL (honoring the geology) (ssaly the dimension of tive elencinis incesse wit destin)

MESH: parallelism

	Litle volume $(10 \times 10 \times 10 \mathrm{~km})$	Huge volume $(300 \times 300 \times 100 \mathrm{~km})$
Long period	~ 1 million	$\sim 1 / 5$ millions
Short period	$\sim 5 / 10$ milions	$\sim 0.5 / 10$ billions (Eath ~ 20 Ghex)

MESH: no automatic solution

MESHER: CUBIT

The CUBIT Geometry and

 Mesh Generation ToolkitFREE for academic
(300\$ distribution fee for institution, you can share with your colleagues inside the institution,fairly)

2D/3D solid-modeler mesher:

- Geometry preparation
-Automatic meshing algorithms
—Quality analysis
-Hexahedra/Tetrahedra

MESHER: CUBIT

The CUBIT Geometry and

 Mesh Generation ToolkitFREE for academic (300\$ distribution fee to inside the institution, fairly

2D/3D solid-modeler mesher:

- Geometry preparation
-Automatic meshing algorithms
-Quality analysis
-Hexahedra/Tetrahedra

MESHER: CUBT

The CUBIT Geometry and
 Mesh Generation Toolkit

US national lab: cubit.sandia. gov (free)

Trelis

Academic: csimsoft.com (300\$-1250\$)

2D/3D solid-modeler mesher:

- Geometry preparation
-Automatic meshing algorithms
—Quality analysis
-Hexahedra/Tetrahedra

MESHER: OUBTT

MESHER: OUBT

MESHER: OUBTT

MESHER: OUBTT

MESHER: OUBTT

MESHER: OUBTT

THE MESHING PROCESS

THE MESHING PROCESS

THE MESH-ING PROCESS

THE MESHING PROCESS

I - Construction of the geometry
II - Meshing the geometry
III - Boundary condilion + Export the mesh

THE MESHING PROCESS

CUBIT FLLE: geometry layer + meshing layer

ACI:
Nurbs
$>$ Main engine
All the features of CUBIT are availabl (cleanup tool, imprining,...)
Perfect for mechanical object (CAD...)
Heavy usage of memory
ACIS/Nurbs are not common in geoframeworks (Rhynoceros)
Best option for us: creating the geometry in CUBIT

Triangulate surfaces
secondary engine
NOT all the features of CUBIT are available
good for GOCAD
Much less usage of memory
Triangulate surfaces are everywhere in geophysics
Best option for us: creating and decomposing the model not in CUBIT

THE MESHING PROCESS

I - Construction of the geometry
II - Meshing the geometry
III - Boundary condilion + Export the mesh

THE MESHING PROCESS

O - Define purpose and resolution of mesh
I - Construction of the geometry
II - Meshing the geometry
III - Boundary condition + Export the mesh

MESHING STRATEGES

a) brutal (by hand in cubit)

MESHING STRATEGES

a) brutal (by hand in cubit)
b) GEOcubit (scripting)

MESHING STRATEGES

a) brutal (by hand in cubit)
b) GEOcubit (scripting)
c) "Not-honoring"

MESHING STRATEGES (a)

MESHING STRATEGES (a)

MESHING STRATEGES (c)

MESHING STRATEGES (c)

MESHING STRATEGES (c)

MESHING STRATEGIES (c)

MESHING STRATEGES (c)

goal: meshing automatically some reference geological cases

MESHING STRATEGES (c)

goal: meshing automatically some reference geological cases

MESHING STRATEGES (c)

goal: meshing automatically some reference geological cases

MESHING STRATEGES (c)

goal: meshing automatically some reference geological cases

MESH-ING STRATEGES (c)

goal: meshing automatically some reference geological cases

MESHIING STRATEGES (c)

goal: meshing automatically some reference geological cases

MESHING STRATEGES (c)

goal: meshing automatically some reference geological cases

MESHING STRATEGES (c)

goal: meshing automatically some reference geological cases
[]Semi-automatic (user defines interfaces, tomography, topography,To, Δh)

- Parallel (faster both for the creation of the NURBS geometry and for the mesh - huge mesh and volume)
[]"cake-layered" volume (main discontinuities honored + tomography)

I- Each chunk has the same number of elements

GEOCUBIT

CIG
developer* http://www.geodynamics.org/wsvn/cig/seismo/3D/GEOCUBTT https://github.com/casarott/GEOCUBIT--experimental
mesh: layered geological volume (parallel) mesh: automatic assign of the boundary condition mesh: export in SPECFEM3D_cartesian format environment: python script, cubit GUl, interative, cluster queue mesh: spherical layered geological volume* mesh: vertical "sandwich" layered geological volume* mesh: hex27*
mesh: cpm|*

GEOCUBIT - simplify

[cubit.options]
cubit_info=off
echo_info=off
working_dir=mesh_california/
output_dir=mesh_california/output

GEOCUBIT.py --build_volume --mesh --cfg=examples/scal.cfg

GEOCUBIT.py --collect --meshfiles=mesh_vol_0.cub --export2SPECFEM3D
GEOCUBIT.py --collect --meshfiles=mesh_vol_0.cub --cpml --cpml_size=7000 --export2SPECFEM3D

[simulation.cpu_parameters]
number_processor_xi
number_processor_eta
\#
[geometry.volumes]
volume_type
latitude_min
latitude_max
longitude_min
longitude_max
nx
ny
unit
[geometry.volumes.layercake]
$\mathrm{nz}=3$
bottomflat = True
depth bottom $=-60000$
filename =moho_607I_5781 surf.xyz,topo_607I_578 I surf.xyz,
geometry_format=ascif
[meshing]
map_meshing_type=regularmap
iv interval=3,4
size $=7500$
or_mesh_scheme=map
ntripl=2
smoothing=False
coarsening top layer=False
refinement_depth=2,2
= layercake volume ascii regulargrid regularmap
$=131000$
$=738000$
$=3480000$
$=4058000$
$=6071$
= 578 1
$=\mathrm{utm}$

GEOCUBIT - scripting

Italy divided in 256 meshed block
For each M>5 some blocks are selected and stitched

GEOCUBIT - scripting

Italy divided in 256 meshed block
For each M>5 some blocks are selected and stitched

Maiella

GEOCUBIT - scripting

Italy divided in 256 meshed block
For each M>5 some blocks are selected and stitched

meshing - control Δt (S.California)

meshing - control resolution (Alaska)
min period resolved
2.0
$\begin{array}{ll}1+90 & 8.0\end{array}$

min period resolved $2.0 \quad 4.0 \quad 6.0$ 8.0

0.98
8.1

working in progress - low angles (ATF)

Geometry from Rhinoceros (Luigi Vadacca)

working in progress - low angles (ATF)

Geometry from Rhinoceros (Luigi Vadacca)

THANKS

TUTORIAL: 16.7.2013-20:30
Trelis (trial version) http://goo. gl/RC7oP

