

HIGH-FREQUENCY GLOBAL WAVEFIELDS FOR FORWARD AND INVERSE MODELING

Tarje Nissen-Meyer¹, Martin van Driel¹, Simon Stähler Kasra Hosseini², Stefanie Hempel³, Alexandre Fournier

¹ETH Zurich (Switzerland); ²LMU Munich (Germany) ³Universität Münster (Germany); ⁴IPG Paris (France)

> July 15, 2013 Carl's workshop

Fairbanks, Alaska

Overview

1. Motivations & background

2. Methodology & validation

3. Applications: Forward modeling

4. Applications: Data & inverse modeling

Overview

1. Motivations & background

- (a) Geophysical context
- (b) Physical, structural, computational complexity
- 2. Methodology & validation

3. Applications: Forward modeling

4. Applications: Data & inverse modeling

Early days

A full-wave solution to capture the entire frequency band for tomography

motivated by:

(1) Structure & dynamics, (2) Broadband data, (3) Computational constraints

Large-scale structures

Relative anisotropic S variations In((VSH - VSV)/VS)

(Auer et al. 2013, to be subm..)

Small-scale structures

Kito, Rost,, Thomas, Garnero, 2007

Needed to resolve structures

Waveform stacks at 6 seconds

Global STA/LTA stacking broadband vertical SYNTHETIC data from

Waveform stacks at 64 seconds

Global STA/LTA stacking broadband vertical seismic data from

Global STA/LTA stacking broadband vertical SYNTHETIC data from at 64 sec

Wave modeling end-members

Modeling quantity & complexity

→ Jointly accommodate data complexity in time, frequency, quantity

Computability

Computable processes

algorithmic solution in effective manner
a sequence of simple, local steps
on computer bits, atoms in matter

Two types of computations:

(1) nature itself... forward modeling!(2) subjects (humans) attempting to replicate nature... inverse modeling!

Two factors matter in seismic modeling:

(1) Computational cost \Rightarrow 1 hour or 1 month?

(2) Reliability of assumptions \Rightarrow Occam's Razor

Structural vs. physical complexity

Structural vs. physical complexity

Overview

1. Motivations & background

2. Methodology & validation

- (a) Axisymmetric collapse & discretization
- (b) Broadband validation & wavefields
- 3. Applications: Forward modeling

4. Applications: Data & inverse modeling

Flat Earth

Axisymmetric source radiation:

4 simulations per earthquake

Azimuthal integration (weak form): $\int_{0}^{2\pi} \cos^{2} 2\phi \, d\phi = \pi$

3-D system in a 2-D domain

Axisymmetric spectral-element method S

Less than Moore: AxiSEM

Axisymmetric Earth models \implies numerical spheroid, analytical toroid

Background models

Rheologies:

Acoustic, elastic, viscoelastic fully anisotropic

2.5D axisymmetric structures:

Arbitrary geometry & structure

Body wave observations PKPbc-PKIKP and PKPab-PKIKP polar paths

(Deuss et al, 2010)

Inner-core anisotropy (tilted)

1D model, 2D domain, 3D waves

(anisotropic) PREM, dominant period: 2s, explosion at 100km depth

Amplitude spectra benchmark

High-frequency wave propagation

Moment-tensor source, PREM (anisotropic, attenuated), dominant period 5s

Simulated on a workstation, 16 CPU hours

Parallelization & scalability

- Automated internal mesher
- Domain decomposition: 272 CPUs
- Exactly load balanced
- Small domain interfaces
- Max. 2 neighbors

Computational cost

Overview

1. Motivations & background

2. Methodology & validation

3. Applications: Forward modeling

- (a) 1D: Once-and-for-all solutions
- (b) 2.5D: High-frequency wavefields
- (c) 3D: Scattering approaches
- 4. Applications: Data & inverse modeling

A comprehensive database

Superstacks

- Nonlinear STA/LTA stacks
- 500'000 seismograms
- Filtered at 0.4-2Hz
- SNR-based rejection

Courtesy Data Products IRIS-DMC

... phase identification by modelling?

2.5D structures

- \hookrightarrow Torus-like structures
- → High-frequency waves only see small Fresnel zone
- ightarrow Waveform modeling often on 2.5D structural parameters

(TNM et al., 2013, in prep.)

Large low shear velocity provinces

Question: Thermal versus compositional anomaly Proxy: Boundary sharpness (sharp recompositional)

Differential wavefields for sharp vs. gradational LLSVP boundary.

(TNM et al. 2013, to be submitted)

Parsimonious 3D modeling

- Exploit weak & sparse heterogeneities
- Exploit 1/(curse of dimensionality)
- Link computational cost to model complexity
- Iterative inversions: local adjustments

Wavefield injection: Hybrid methods, exact boundary conditions Scattering integrals: Born modeling, modified Neumann series

First-order scattering

Simulation time per event and 3D model: 1 second

Reality check

ARE YOU LIVING IN A COMPUTER SIMULATION?

BY NICK BOSTROM

[Published in Philosophical Quarterly (2003) Vol. 53, No. 211, pp. 243-255. (First version: 2001)]

This paper argues that *at least one* of the following propositions is true: (1) the human species is very likely to go extinct before reaching a "posthuman" stage; (2) any posthuman civilization is extremely unlikely to run a significant number of simulations of their evolutionary history (or variations thereof); (3) we are almost certainly living in a computer simulation. It follows that the belief that there is a significant chance that we will one day become posthumans who run ancestor-simulations is false, unless we are currently living in a simulation. A number of other consequences of this result are also discussed.

The End of Theory: The Data Deluge Makes the Scientific Method Obsolete

By Chris Anderson 🖂 06.23.08

.... let big data take control!

Overview

1. Motivations & background

2. Methodology & validation

3. Applications: Forward modeling

4. Applications: Data & inverse modeling

- (a) Data & modelling
- (b) Forensic sensitivity
- (c) CMB topography

$P_{\rm diff}$ tomography

$P_{\rm diff}$: 10 seconds

Raw

Shifted (xcorr)

(Hosseini et al. 2013, in prep)

$P_{\rm diff}$: 10 seconds

Shifted (event2)

(Hosseini et al. 2013, in prep)

PKiKP: 10 seconds

Shifted (event2)

(Hosseini et al. 2013, in prep)

$P_{\rm diff}, PKiKP$: 5 seconds

Pdiff

PKiKP

Sensible seismograms

... with global wavefields $\mathbf{u}(\mathbf{x},t)$ from AxiSEM

(TNM & Fournier, 2013, t.b. subm.)

Forensic sensing of seismograms

PKP phase and CMB topography

(Colombi, TNM, Boschi, 2013, to be submitted)

CMB topography models

(a) SKSac

S40RTS traveltimes $3^{\circ} \times 3^{\circ}$ grid up to degree 12 contour lines: sufficient coverage Inversion for topography only

Need joint inversion

(Colombi, TNM, Boschi, 2013, to be submitted)

Conclusions

Code works.

Full-range frequency global wavefields Dimensional collapse: once-and-for-all solutions Framekwork for scattering approaches

Data at 5-10s well suited for waveform tomography Forensic sensitivity: Comprehensive data-model mining CMB topography: Poorly constrained without joint inversion

Onset-pick ⇒ traveltime ⇒ waveform ⇒ wavefield seismology

More information & tutorial

Kasra Hosseini Zad

More info: www.axisem.info

Martin v. Driel

Lion Krischer

AxiSEM/ObsPy Tutorial

Aim: Familiarize users with code procedure and range of applicationsApproach: Out-of-the-virtual boxContent: Obspy, AxiSEM, data and synthetics, scripts, manuals

- 1. Simulate at low-resolution: AxiSEM I/O procedures
- 2. Wavefields, record sections, source-receiver geometries
- 3. Load/plot event data (IRIS) with ObsPy scripts
- 4. Compare data with AxiSEM & SPECFEM synthetics
- 5. Change background models, filtering, source parameters
- 6. Cross-correlate traveltimes, plot delay times