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SeisSol - Project overview

Coordination, Host, Physics, 
Numerics, Algorithm,  Pre- and 
Postprocessing, Application,
User support

Technical development, HPC, 
Optimization, Visualization, Design

Consulting, Scaling,
BlueGene/Q adaption Visualization, parallel I/O

Automated CAD generation

...and others … 
Support, Guidance, 
Experience sharing, Consulting, ...Meshing, CAD generation



  

Goal

Complete seismic wave propagation 
package including solutions for

● dynamic rupture simulations

● exploration industry

● Seismology

with complex geometry
and heterogeneous medium.

Warmer colors 
= higher intensity

USGS - http://earthquake.usgs.gov/earthquakes/shakemap/ (modified)

Käser, Martin, Christian Pelties, E. Cristobal Castro, 
Hugues Djikpesse, and Michael Prange (2010), Wave 
Field Modeling in Exploration Seismology Using the 
Discontinuous Galerkin Finite Element Method on 
HPC-infrastructure, The Leading Edge

http://earthquake.usgs.gov/earthquakes/shakemap/


Requirements for solver

What do we need for this?

● Accurate numerical methods for reliable results (num. errors, boundary-, initial conditions)

● Proper geometry representation (topography, material interfaces)

● Use of acoustic, elastic, viscoelastic, and anisotropic material to approximate realistic 
geological subsurface properties

● Scalability on HPC architecture to tackle big problems with high frequency

(Merapi model)
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Advantages of the ADER-DG Method

● Enables use of unstructured meshes – low velocity basins, curved or kinked faults, 
branching, surface rupture, fault interaction

● Mesh coarsening – adjustment of resolution 

● High-order accurate simulation of the wave propagation including heterogeneous 
media and topography



Advantages of the ADER-DG Method

● ADER high-order time integration with local time stepping

● High-accurate results of the rupture process: Oscillation free dynamic rupture

SEM vs ADER-DG



  

Mathematical Model



  

Mathematical Model



  

Discontinuous Galerkin Approach – Flux computation

Computation of the line integrals:

●  Pre-computed analytically

●  Gauss-Legendre integration

     Opens up new possibilities:
     non-conforming meshes, dynamic rupture source type

Locality of the computations:
only directly neighboring elements are required to exchange 
data, which leads to small communication times for parallel 
calculations
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Efficiency on the BlueGene/P machine Shaheen at KAUST

● 7,7 Mio. Elements
● Order of accuracy in space and time: O5
● Pure MPI parallelization – code is openMP hybrid now
● Metis partitioning

Efficiency at 90%!

Suitability for large scale HPC infrastructure

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview


  

Incorporate source process

● To understand earthquake faulting
● Support physics-based ground motion prediction

Treat dynamic rupture as an interior time-dependent 
'boundary condition' using the flux term!

● Impose new traction following the failure criterion
● Impose fault parallel velocities in opposite directions

Dynamic Earthquake rupture

Example: 1994 Northridge by A. Gabriel



(Brietzke et al. (2009))

friction: 
non linear relation 
between fault 
stress and slip

(Harris et al. (2009))

Ingredients



  

Failure criterion:

Coulomb friction model

∣ xy∣ ≤  f 

∣ xy∣ −  f  v = 0

 xy

 f



traction

friction coefficient

normal stress

slip rate v

traction        fault strength  



  

Failure criterion:

Coulomb friction model

 xy

 f



 d

 v

Dc

traction

friction coefficient

normal stress

slip rate

slip

critical slip distance

Linear Slip Weakening friction law
(laboratory experiments 
 – rate-and-state also implemented)

Provides:

●  initial rupture

●  arrest of sliding

●  reactivation of slip

∣ xy∣ ≤  f 

∣ xy∣ −  f  v = 0

traction        fault strength  



  

Verification – TPV3 SCEC Test Case

● spontaneous rupture propagation on a straight fault
● homogeneous fullspace
● linear slip weakening friction

(Harris et al., 2004)

Comparison between 
ADER-DG method order 4 and 200m triangles at the fault (larger tetrahedrons in bulk)

and 
DFM - Finite Difference staggered-grid split node order 2 with 50m grid interval

and
       MDSBI - Multidimensional spectral boundary integral with 50m grid interval



  
Day, S. M., L. A. Dalguer, N. Lapusta, Y. Liu (2005), Comparison of finite difference and boundary 
integral solutions to three-dimensional spontaneous rupture, J. Geophys. Res., 110, B12307
DFM data provided by Luis Dalguer. MDSBI data computed with the code of E. Dunham (version 
3.9.10).

Verification – TPV3 SCEC Test Case
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LSW

Verification – TPV3 SCEC Test Case



  

Workflow

From CAD to seismogram...

● Get geometry and model data

● Assemble CAD model

● Create mesh

● Partitioning

● Set model parameters

● Solve physical equation

● Analysis of output

Pre-processing

Post-processing

“Time to solution!”



  

Automated CAD generation

Current bottleneck:           CAD generation can easily consume weeks to month

Difficulties:

● Surface reconstruction of different types of initial raw data
● Undulating 3D surfaces that merge under shallow angles, intersect
● Remove non-physical features
● Clip too small features depending on the desired mesh size
● Representation by splines as typically used by (commercial) CAD/mesh 

software unfortunate for geological data
● Watertight model
● Seamless integration into meshing software (avoid format conversion)



  

Automated CAD generation – preliminary workflow

1.  Download topography/bathymetry, e.g. from NOAA's ETOPO data collection

2.  Define bounding box: rectangular or spherical

3.  Material interfaces: structured grids of points

4.  Faults: structured grids of points, gOcad's TS format

5.  Check projection

6.  (Triangulated) surface generation: Poisson surface reconstruction (MeshLab)

7.  Assemble model: apply union, intersection, trimming operations with Simmetrix 
discrete modeling tools

Biscay 
model, 
S. Wenk



Customized problem definition and mesh generation interface for SeisSol 
by RPI/SCOREC/Simmetrix (C. Smith, M. Shephard)

● Accepts e.g. Parasolid, ACIS and STL input

● Trims automatically geometry and creates a watertight model

● Meshes with millions of elements in seconds/minutes

● Mesh coarsening/refining

● Handling complex geometries (no violation)

● user-friendly interface

● Quality metrics

● Exports SeisSol format

● Non-manifold geometry required
Two faces.  At the 
intersection there are 
two edges overlapping.
= assembly 

Two faces.  At the 
intersection there 
is one shared 
edge.
= non-manifold

SimModeler



Gambit
vs

SimModeler



SimModeler



SimModeler



THex approach

Work by Surendra Nadh Somala and Jean-Paul Ampuero



Compare final slip and slip rate from homogeneous 
dynamic rupture simulation on planar dipping fault with 
rate-and-state friction (Olsen et al., 1998)

Example – The Mw 6.7 1994 Northridge earthquake

Work by A. Gabriel



Conclusion & Outlook

● ADER-DG solver ready, functional and benchmarked

● Bring all features into production version (under construction)

● Combine dynamic rupture with local time stepping

● Current bottleneck CAD generation (under construction)

● Use CAD for quality control

● Open Source (soon), already available through 

http://seissol.geophysik.uni-muenchen.de/

http://verce.eu/

http://seissol.geophysik.uni-muenchen.de/
http://verce.eu/


Failure criterion

Implementation of rate-and-state friction

● Updating scheme includes Newton-Raphson 
search for slip rate and two iterations for state 

variable (Kaneko et al., 2008)

Rate-and-state dependent friction

Velocity-stepping experiment of 
Niemeijer et al. (2010)

SCEC TPV102 benchmark  







By A. Nerger



Tohoku

● CAD generation difficult
● Extremely shallow angle at trench
● Skewed elements
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