STRUCTURE OF THE LEEDS DYNAMO CODE

Ashley P. Willis

a.p.willis@shef.ac.uk

Governing equations

(Ro@t—EVZ)u = Nu_vﬁa
(0, —VHB = Ngp,
(8t—qV2)C = Nc.

Toriodal-poloidal decomposition

u = Vx(ITr)+V xV x(Pr),
B = Vx(Tr)+V xV x(Pr).

Numerical formulation

(0, —VHP = Np

(0, —VHT = Nr

(Ro0; — EV)T = Nr,
(RoO; — EV*)P = g

—V29 = Np

(0, —qV?)C = Nc.

Model equation
(a0 — bV f =N

e A lot of code-sharing.
e narrow f.d. stencil or higher-order approximation for a given width.
e good stability.

e Each 2nd-order + 2 BCs, except system

(r; <7 <7Tp) P=0.,P=0 (r=riyr,),

(Rod;, — EV))P = g
—V?9 = Np

which has 4 BCs on P, none on g.

Green’s function or influence-matrix method

JR— 2 pu—
e N
Write as system
{é; = ?v P=0,0 8,P=0,0 (r=ryr,).

Let P= P +a P, +bP,, where

912170

e P, and P, both precomputable.
e Only inverted for P each timestep.
e P satisfies two BCs automatically: 0,P = 0,0.

e Scalars a and b set by remaining two BCs: P = 0,0.
(Requires inversion of a 2x2 matrix.)

e BCs on another variable or coupling BCs satisfied to numerical precision.

e Compuatational overhead is nominal.

Modules

Somewhere to gather together related data and functions that work on that
data. Don’t worry about syntax here!

| >k sk >k 3k >k 5k >k 3k ok 3k ok 5k 3k >k 3k >k 3k >k 5k >k 3k >k 3k ok >k 3k 5k 3k 5k 3k >k 5k >k 3k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k >k 5k >k >k >k >k %k >k %k >k %k >k %k *k >k %k

module rotation
| sk sk ok ok ok ok ok ok 5k 3k 3k ok ok ok ok ok ok ok 5k 3k 3k sk ok ok ok ok ok ok 5k 5k 3k ok ok ok ok ok ok ok ok 5k 3k ok ok ok ok ok ok ok ok 3k sk sk ok ok ok ok ok ok ok k sk ok 5k

use parameters, timestep ! use data from other modules
implicit none
save
! data other mods can inherit
double precision :: rot_omega
double precision :: rot_torque
I private data
double precision, private :: rot_inertia
contains
! ___
' initialise

subroutine rot_precompute()

rot_omega = 0dO

rot_inertia = (8d0*d_PI/15d0) * d_ICradiusx**5
end subroutine rot_precompute

subroutine rot_predictor ()
rot_omega = rot_omega &
+ (tim_dt/rot_inertia) * rot_torque
end subroutine rot_predictor

| >k sk >k 5k >k 5k >k >k ok 5k ok >k 3k >k 3k >k 3k >k 5k >k 5k >k >k ok >k 3k >k 3k >k 3k >k 5k >k 5k >k 5k >k >k >k >k >k >k 3k >k 3k >k 3k >k >k >k >k >k >k %k >k %k >k %k >k %k %k >k %

end module rotation
| sk sk ok ok ok ok ok ok sk sk 3k ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok ok ok ok sk 3k sk ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok ok ok ok sk ok %k

Modules:

codensity, (IC) rotation, these variables stored here
velocity, magnetic + predictor-corrector functions
timestep functions for setting up matrices for model egn

(ad; — bV2) f = N.

nonlinear evaluate nonlinear (coupling) terms N.

mpi mpi_rnk, mpi_sze

mesh selection of radial points r,

legendre weights for transforms.

variables definition of data types (coll), (spec), (phys)
transform between spherical harmonic coeffs

and data at points in physical space.

The ‘main’ program:

parameters physical and numerical parameters
main the main time-stepping loop
io input / output

A ‘derived’ data type:

Define type:

type phys Itheta,phi,r
double precision :: Re(10, 0:11, 5)
end type phys

Declare a variable: type (phys) :: p

Set value of an element: p%Re(j,i,n) = 1d0

e No need to specify the dimension of every variable with the same size
e Very handy when passing between functions.

e Fortran column dominant — keep ‘close’ data in first index, split over last
index...

Legendre transform strongly linked to data types

M-1 L-1

A(ea ¢) - Alm }/Em(ea ¢)

&~

3
I
s}
T
3

A(rp,0,0) = 2{: j{:x4hnn}DM”(COSQ)
Tn; R ¢ Z elm¢A]mn

A(rp, 05, 0:) = Ajin

(coll) (A,)n, Data at collocation point for each harmonic.
All n on same CPU (split accross modes im)

— transpose —
(spec) (Amn)n All spectral coeffs on same CPU (split accross radial pts)

sum over [at each ; — (A;n)n
sum over m at ¢; (FFT) —

(phys) (4,;), data evaluated on points in physical space.

Strengths

e Short — 3000 lines excluding 10. Readable — modular, function-based.
e Data easily manipulated — function-based, netCDF.

e Fastin serial.

e Timestep control (improved by Chris Jones).

e Parallelised, linear scaling with number of CPUs.

Weakness

e Number of CPUs currently limited to number of radial points.
(See index n on (spec))

Possible way out:

(Ap)im; (transpose) — (A;)mn; (SUum over I) — (A;)pn;
(transpose) — (Ay,)jn; (FFT) — (A -

The ‘derived’ types:

type spec
double precision
double precision
end type spec

type coll
double precision
double precision
end type coll

type phys
double precision
end type phys

:: Re(0:1_H1, i_pN)
:: Im(0:i_H1, i_pN)

:: Re(i_N, 0:i_pH1)
:: Im(i_N, O0:i_pH1)

:: Re(i_Th, 0:i_Ph-1, i_pN)

Currently split over radial points, n € [1, N],

and harmonics Im mapped to a single index nh € [0: H — 1].

