[cig-commits] r15782 - doc/geodynamics.org/benchmarks/trunk/geodyn

luis at geodynamics.org luis at geodynamics.org
Wed Oct 7 12:15:30 PDT 2009


Author: luis
Date: 2009-10-07 12:15:29 -0700 (Wed, 07 Oct 2009)
New Revision: 15782

Modified:
   doc/geodynamics.org/benchmarks/trunk/geodyn/index.html
   doc/geodynamics.org/benchmarks/trunk/geodyn/index.rst
Log:
Fixed table and formatting of images in geodyn/index.rst

Modified: doc/geodynamics.org/benchmarks/trunk/geodyn/index.html
===================================================================
--- doc/geodynamics.org/benchmarks/trunk/geodyn/index.html	2009-10-07 19:15:23 UTC (rev 15781)
+++ doc/geodynamics.org/benchmarks/trunk/geodyn/index.html	2009-10-07 19:15:29 UTC (rev 15782)
@@ -5,7 +5,7 @@
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <meta name="generator" content="Docutils 0.5: http://docutils.sourceforge.net/" />
 <title></title>
-<link rel="stylesheet" href="../css/default.css" type="text/css" />
+<link rel="stylesheet" href="../css/voidspace.css" type="text/css" />
 </head>
 <body>
 <div class="document">
@@ -23,14 +23,14 @@
 <p>In both cases the Ekman number is [;E = 10^{3};] and the Prandtl number is
 [;Pr = 1;]. The Rayleigh number is set to [;Ra = 100000;]. Note that the
 definition of the Rayleigh number differs from the one in the published
-cases [6] by a factor of Ekman number, i.e., [;Ra=frac{Ra}{E};]. The
+cases [6] by a factor of Ekman number, i.e., [;Ra=\frac{Ra}{E};]. The
 magnetic Prandtl number is zero in the non-magnetic convection case 0, and
 is [;Pm = 5;] in case 1. The spherical harmonic expansion is truncated at
-degree [;]ell_{max}=32;] and a four-fold symmetry is assumed in the
-longitudinal direction (<tt class="docutils literal"><span class="pre">param.f</span></tt> should be linked to <tt class="docutils literal"><span class="pre">param32s4.f</span></tt>
-when you compile MAG). The input parameter files are <tt class="docutils literal"><span class="pre">par.bench0</span></tt>
-for case 0, and <tt class="docutils literal"><span class="pre">par.bench1</span></tt> for case 1; both files reside in the
-<tt class="docutils literal"><span class="pre">~/src</span></tt> directory.</p>
+degree [;\ell_{max}=32;] and a four-fold symmetry is assumed in the
+longitudinal direction (the file <tt class="docutils literal"><span class="pre">param.f</span></tt> should be linked to
+<tt class="docutils literal"><span class="pre">param32s4.f</span></tt> when you compile MAG). The input parameter files are
+<tt class="docutils literal"><span class="pre">par.bench0</span></tt> for case 0, and <tt class="docutils literal"><span class="pre">par.bench1</span></tt> for case 1; both files
+reside in the <tt class="docutils literal"><span class="pre">~/src</span></tt> directory.</p>
 <p>The output files of the benchmark cases are stored n the directory
 <tt class="docutils literal"><span class="pre">~/bench-data/data_bench0</span></tt> and <tt class="docutils literal"><span class="pre">~/bench-data/data-bench1</span></tt> respectively.
 In the following table we see the solutions from MAG agree with the
@@ -39,10 +39,10 @@
 relatively short run of MAG</p>
 <table border="1" class="docutils">
 <colgroup>
-<col width="17%" />
+<col width="19%" />
 <col width="27%" />
 <col width="13%" />
-<col width="28%" />
+<col width="27%" />
 <col width="14%" />
 </colgroup>
 <tbody valign="top">
@@ -52,65 +52,91 @@
 <td>Case 1 Suggested Value</td>
 <td>Mag Case 1</td>
 </tr>
-<tr><td>[;E_{kin};]
-[;E_{mag};]
-[;T;]
-[;mu_{phi};]
-[;B_{theta};]
-[;omega;]</td>
-<td><p class="first">[;58.348 pm 0.050;]</p>
-<p>[;0.42812 pm 0.00012;]
-[;-10.1571 pm 0.0020;]</p>
-<p class="last">[;0.1824 pm 0.0050;]</p>
-</td>
-<td><blockquote class="first">
-58.35</blockquote>
-<p class="last">-10.80</p>
-</td>
-<td>[;30.733 pm 0.020;]
-[;626.41 pm 0.40;]
-[;0.37338 pm 0.00040;]
-[;-7.6250 pm 0.0060;]
-[;-4.9289 pm 0.0060;]
-[;-3.1017 pm 0.0040;]</td>
-<td><p class="first">30.72
-627.15</p>
-<p class="last">-7.84</p>
-</td>
+<tr><td>[;E_{kin};]</td>
+<td>[;58.348 \pm 0.050;]</td>
+<td>58.35</td>
+<td>[;30.733 \pm 0.020;]</td>
+<td>30.72</td>
 </tr>
+<tr><td>[;E_{mag};]</td>
+<td>&nbsp;</td>
+<td>&nbsp;</td>
+<td>[;626.41 \pm 0.40;]</td>
+<td>627.15</td>
+</tr>
+<tr><td>[;T;]</td>
+<td>[;0.42812 \pm 0.00012;]</td>
+<td>&nbsp;</td>
+<td>[;0.37338 \pm 0.00040;]</td>
+<td>&nbsp;</td>
+</tr>
+<tr><td>[;\mu_{\phi};]</td>
+<td>[;-10.1571 \pm 0.0020;]</td>
+<td>-10.80</td>
+<td>[;-7.6250 \pm 0.0060;]</td>
+<td>-7.84</td>
+</tr>
+<tr><td>[;B_{\theta};]</td>
+<td>&nbsp;</td>
+<td>&nbsp;</td>
+<td>[;-4.9289 \pm 0.0060;]</td>
+<td>&nbsp;</td>
+</tr>
+<tr><td>[;\omega;]</td>
+<td>[;0.1824 \pm 0.0050;]</td>
+<td>&nbsp;</td>
+<td>[;-3.1017 \pm 0.0040;]</td>
+<td>&nbsp;</td>
+</tr>
 </tbody>
 </table>
 </div>
 <div class="section" id="reversal-dynamo-case">
 <h1>Reversal Dynamo Case</h1>
 <p>In this benchmark, we produce a magnetic field reversal using MAG. The
-input parameter in the source directory for this case is <cite>~/src/par.Rev</cite>.
+input parameter in the source directory for this case is <tt class="docutils literal"><span class="pre">~/src/par.Rev</span></tt>.
 There is no longitudinal symmetry in this case, so when you compile MAG,
-use <cite>param32s1.f</cite> linking to <cite>param.f</cite>. The Ekman number is [;E=0.02;], the
-Prandtl number is [;Pr=1;] and the magnetic Prandtl number is [;Pm=10;]. The
-Rayleigh number is [;Ra=12000;].</p>
+use <tt class="docutils literal"><span class="pre">param32s1.f</span></tt> linking to <tt class="docutils literal"><span class="pre">param.f</span></tt>. The Ekman number is [;E=0.02;],
+the Prandtl number is [;Pr=1;] and the magnetic Prandtl number is [;Pm=10;].
+The Rayleigh number is [;Ra=12000;].</p>
 <div class="section" id="results-and-discussions">
 <h2>Results and Discussions</h2>
-<p>This case was run on 32-bit and 64-bit Intel processors. Figure
-[fig:Field-Plot1] shows a plot of mean velocity Vrms, mean magnetic
+<p>This case was run on 32-bit and 64-bit Intel processors.
+<a class="reference internal" href="#figure-field-plot1">Figure [Field-Plot1]</a> shows a plot of mean velocity Vrms, mean magnetic
 field Brms, the axial dipole and the dipole tilt on the outer boundary.
 It indicated a magnetic field reversal between times 25 and 30.
-Figure [fig:Field-Plot2] shows a longer run of MAG, where we see the
+<a class="reference internal" href="#figure-field-plot2">Figure [Field-Plot2]</a> shows a longer run of MAG, where we see the
 magnetic field reversed again. At this time, the magnetic field had
-weakened substantially. In Figure [fig:The-pole], the top is the pole plot
+weakened substantially. In <a class="reference internal" href="#figure-the-pole">Figure [The-Pole]</a>, the top is the pole plot
 before the second field reversal and the bottom is the pole plot after the
 second field reversal.</p>
-<div class="figure">
-<img alt="images/field-64.psFigure[fig:Field-Plot1]:FieldPlotforReversalDynamoCase" src="images/field-64.psFigure[fig:Field-Plot1]:FieldPlotforReversalDynamoCase" />
+<!-- fig:Field-Plot1 -->
+<div align="center" class="figure">
+<img alt="field plot" src="images/field-64.png" />
+<p class="caption"><span class="target" id="figure-field-plot1">Figure [Field-Plot1]</span></p>
+<div class="legend">
+Field Plot for Reversal Dynamo Case</div>
 </div>
-<div class="figure">
-<img alt="images/field-64-revR.psFigure[fig:Field-Plot2]:FieldPlotforReversalDynamoCase(longerrun)" src="images/field-64-revR.psFigure[fig:Field-Plot2]:FieldPlotforReversalDynamoCase(longerrun)" />
+<!-- fig:Field-Plot2 -->
+<div align="center" class="figure">
+<img alt="field plot" src="images/field-64-revR.png" />
+<p class="caption"><span class="target" id="figure-field-plot2">Figure [Field-Plot2]</span></p>
+<div class="legend">
+Field Plot for Reversal Dynamo Case (longer run)</div>
 </div>
-<div class="figure">
-<img alt="images/g1revR.ps" src="images/g1revR.ps" />
+<!-- fig:The-Pole -->
+<div align="center" class="figure">
+<img alt="pole plot" src="images/g1revR.png" />
+<p class="caption"><span class="target" id="figure-the-pole">Figure [The-Pole]</span>: Magnetic Field Pole Plot.</p>
+<div class="legend">
+Pole plot at the beginning of the second field reversal.</div>
 </div>
-<div class="figure">
-<img alt="images/g7revR.psFigure[fig:The-pole]:MagneticFieldPolePlot.Thetopisthepoleplotatthebeginningofthesecondfieldreversal;thebottomisthepoleplotattheendofthesecondfieldreversal." src="images/g7revR.psFigure[fig:The-pole]:MagneticFieldPolePlot.Thetopisthepoleplotatthebeginningofthesecondfieldreversal;thebottomisthepoleplotattheendofthesecondfieldreversal." />
+<!-- fig:The-Pole2 -->
+<div align="center" class="figure">
+<img alt="pole plot" src="images/g7revR.png" />
+<p class="caption"><span class="target" id="figure-the-pole2">Figure [The-Pole2]</span>: Magnetic Field Pole Plot.</p>
+<div class="legend">
+Pole plot at the end of the second field reversal.</div>
 </div>
 </div>
 </div>

Modified: doc/geodynamics.org/benchmarks/trunk/geodyn/index.rst
===================================================================
--- doc/geodynamics.org/benchmarks/trunk/geodyn/index.rst	2009-10-07 19:15:23 UTC (rev 15781)
+++ doc/geodynamics.org/benchmarks/trunk/geodyn/index.rst	2009-10-07 19:15:29 UTC (rev 15782)
@@ -13,14 +13,14 @@
 In both cases the Ekman number is [;E = 10^{3};] and the Prandtl number is
 [;Pr = 1;]. The Rayleigh number is set to [;Ra = 100000;]. Note that the
 definition of the Rayleigh number differs from the one in the published
-cases [6] by a factor of Ekman number, i.e., [;Ra=\frac{Ra}{E};]. The
+cases [6] by a factor of Ekman number, i.e., [;Ra=\\frac{Ra}{E};]. The
 magnetic Prandtl number is zero in the non-magnetic convection case 0, and
 is [;Pm = 5;] in case 1. The spherical harmonic expansion is truncated at
-degree [;]\ell_{max}=32;] and a four-fold symmetry is assumed in the
-longitudinal direction (``param.f`` should be linked to ``param32s4.f``
-when you compile MAG). The input parameter files are ``par.bench0``
-for case 0, and ``par.bench1`` for case 1; both files reside in the 
-``~/src`` directory.
+degree [;\\ell_{max}=32;] and a four-fold symmetry is assumed in the
+longitudinal direction (the file ``param.f`` should be linked to
+``param32s4.f`` when you compile MAG). The input parameter files are
+``par.bench0`` for case 0, and ``par.bench1`` for case 1; both files
+reside in the ``~/src`` directory.
 
 The output files of the benchmark cases are stored n the directory 
 ``~/bench-data/data_bench0`` and ``~/bench-data/data-bench1`` respectively.
@@ -29,51 +29,84 @@
 and case 1, the values listed were obtained with low resolution and a
 relatively short run of MAG
 
-+----------------+-------------------------+------------+--------------------------+-------------+
-|                | Case 0 Suggested value  | Mag Case 0 | Case 1 Suggested Value   | Mag Case 1  |
-+----------------+-------------------------+------------+--------------------------+-------------+
-| [;E_{kin};]    | [;58.348 \pm 0.050;]    |  58.35     | [;30.733 \pm 0.020;]     | 30.72       |
-| [;E_{mag};]    |                         |            | [;626.41 \pm 0.40;]      | 627.15      |
-| [;T;]          | [;0.42812 \pm 0.00012;] |            | [;0.37338 \pm 0.00040;]  |             |
-| [;\mu_{\phi};] | [;-10.1571 \pm 0.0020;] | -10.80     | [;-7.6250 \pm 0.0060;]   | -7.84       |
-| [;B_{\theta};] |                         |            | [;-4.9289 \pm 0.0060;]   |             |
-| [;\omega;]     | [;0.1824 \pm 0.0050;]   |            | [;-3.1017 \pm 0.0040;]   |             |
-+----------------+-------------------------+------------+--------------------------+-------------+
++------------------+--------------------------+------------+--------------------------+-------------+
+|                  | Case 0 Suggested value   | Mag Case 0 | Case 1 Suggested Value   | Mag Case 1  |
++------------------+--------------------------+------------+--------------------------+-------------+
+| [;E_{kin};]      | [;58.348 \\pm 0.050;]    |  58.35     | [;30.733 \\pm 0.020;]    | 30.72       |
++------------------+--------------------------+------------+--------------------------+-------------+
+| [;E_{mag};]      |                          |            | [;626.41 \\pm 0.40;]     | 627.15      |
++------------------+--------------------------+------------+--------------------------+-------------+
+| [;T;]            | [;0.42812 \\pm 0.00012;] |            | [;0.37338 \\pm 0.00040;] |             |
++------------------+--------------------------+------------+--------------------------+-------------+
+| [;\\mu_{\\phi};] | [;-10.1571 \\pm 0.0020;] | -10.80     | [;-7.6250 \\pm 0.0060;]  | -7.84       |
++------------------+--------------------------+------------+--------------------------+-------------+
+| [;B_{\\theta};]  |                          |            | [;-4.9289 \\pm 0.0060;]  |             |
++------------------+--------------------------+------------+--------------------------+-------------+
+| [;\\omega;]      | [;0.1824 \\pm 0.0050;]   |            | [;-3.1017 \\pm 0.0040;]  |             |
++------------------+--------------------------+------------+--------------------------+-------------+
 
 
 Reversal Dynamo Case
 ====================
+
 In this benchmark, we produce a magnetic field reversal using MAG. The
-input parameter in the source directory for this case is `~/src/par.Rev`.
+input parameter in the source directory for this case is ``~/src/par.Rev``.
 There is no longitudinal symmetry in this case, so when you compile MAG,
-use `param32s1.f` linking to `param.f`. The Ekman number is [;E=0.02;], the
-Prandtl number is [;Pr=1;] and the magnetic Prandtl number is [;Pm=10;]. The
-Rayleigh number is [;Ra=12000;].
+use ``param32s1.f`` linking to ``param.f``. The Ekman number is [;E=0.02;],
+the Prandtl number is [;Pr=1;] and the magnetic Prandtl number is [;Pm=10;].
+The Rayleigh number is [;Ra=12000;].
 
 
 Results and Discussions
 -----------------------
-This case was run on 32-bit and 64-bit Intel processors. Figure
-[fig:Field-Plot1] shows a plot of mean velocity Vrms, mean magnetic
+
+This case was run on 32-bit and 64-bit Intel processors.
+`Figure [Field-Plot1]`_ shows a plot of mean velocity Vrms, mean magnetic
 field Brms, the axial dipole and the dipole tilt on the outer boundary.
 It indicated a magnetic field reversal between times 25 and 30.
-Figure [fig:Field-Plot2] shows a longer run of MAG, where we see the
+`Figure [Field-Plot2]`_ shows a longer run of MAG, where we see the
 magnetic field reversed again. At this time, the magnetic field had
-weakened substantially. In Figure [fig:The-pole], the top is the pole plot
+weakened substantially. In `Figure [The-Pole]`_, the top is the pole plot
 before the second field reversal and the bottom is the pole plot after the
 second field reversal.
 
-.. figure:: images/field-64.ps
-   Figure [fig:Field-Plot1]:
+
+.. fig:Field-Plot1
+.. figure:: images/field-64.png
+   :alt: field plot
+   :align: center
+
+   _`Figure [Field-Plot1]`
+
    Field Plot for Reversal Dynamo Case
-   
-.. figure:: images/field-64-revR.ps
-   Figure [fig:Field-Plot2]:
+
+
+.. fig:Field-Plot2
+.. figure:: images/field-64-revR.png
+   :alt: field plot
+   :align: center
+
+   _`Figure [Field-Plot2]`
+
    Field Plot for Reversal Dynamo Case (longer run)
 
-.. figure:: images/g1revR.ps
-.. figure:: images/g7revR.ps
-  Figure [fig:The-pole]: Magnetic Field Pole Plot. The top is the pole plot
-  at the beginning of the second field reversal; the bottom is the pole
-  plot at the end of the second field reversal.
 
+.. fig:The-Pole
+.. figure:: images/g1revR.png
+   :alt: pole plot
+   :align: center
+
+   _`Figure [The-Pole]`: Magnetic Field Pole Plot.
+
+   Pole plot at the beginning of the second field reversal.
+
+
+.. fig:The-Pole2
+.. figure:: images/g7revR.png
+   :alt: pole plot
+   :align: center
+
+   _`Figure [The-Pole2]`: Magnetic Field Pole Plot.
+  
+   Pole plot at the end of the second field reversal.
+



More information about the CIG-COMMITS mailing list