[cig-commits] r15783 - doc/geodynamics.org/benchmarks/trunk/long

luis at geodynamics.org luis at geodynamics.org
Wed Oct 7 12:15:38 PDT 2009


Author: luis
Date: 2009-10-07 12:15:36 -0700 (Wed, 07 Oct 2009)
New Revision: 15783

Modified:
   doc/geodynamics.org/benchmarks/trunk/long/divergence.html
   doc/geodynamics.org/benchmarks/trunk/long/divergence.rst
Log:
Fixed formatting of figures in long/divergence.rst

Modified: doc/geodynamics.org/benchmarks/trunk/long/divergence.html
===================================================================
--- doc/geodynamics.org/benchmarks/trunk/long/divergence.html	2009-10-07 19:15:29 UTC (rev 15782)
+++ doc/geodynamics.org/benchmarks/trunk/long/divergence.html	2009-10-07 19:15:36 UTC (rev 15783)
@@ -5,7 +5,7 @@
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <meta name="generator" content="Docutils 0.5: http://docutils.sourceforge.net/" />
 <title>Divergence</title>
-<link rel="stylesheet" href="../css/default.css" type="text/css" />
+<link rel="stylesheet" href="../css/voidspace.css" type="text/css" />
 </head>
 <body>
 <div class="document" id="divergence">
@@ -14,43 +14,45 @@
 <p>This benchmark tests the implementation of the divergence term in the
 equation [eq:divergence]. In 2D, a constant divergence is applied to a
 square domain, and the velocity on the corners is set to enforce a
-spreading from the center of the square. Figure [fig:Divergence_v_sri]
-shows the velocity and strain rate invariant for a numerical solution.
-For a constant divergence [;d;], the analytic solution for this setup is</p>
+spreading from the center of the square. <a class="reference internal" href="#figure-1">Figure 1</a> shows the velocity
+and strain rate invariant for a numerical solution. For a constant
+divergence [;d;], the analytic solution for this setup is</p>
 <blockquote>
 [;v_x = x \cdot d/2, v_y = y \cdot d/2;]</blockquote>
 <p>In 3D, the analytic solution is</p>
 <blockquote>
 [;v_x = x \cdot d/3, v_y = y \cdot d/3, v_z = z \cdot d/3;]</blockquote>
-<p>In both cases, the strain rate invariant equals [;\sqrt{d/2};]. As shown in
-Figure [fig:Divergence_2D_error], the main source of error in 2D comes
-from inaccuracies in the solver. Figure [fig:Divergence_3D_error] paints
-a different picture in 3D, where the main source of error comes from
-having a finite number of particles.</p>
-<div class="figure">
-<img alt="images/divergence_v.png" src="images/divergence_v.png" />
-<p class="caption">Figure [fig:Divergence_v_sri]</p>
-<div class="legend">
-Velocity and Strain Rate Invariant solution for the 2D Divergence
-benchmark. The variation in the strain rate invariant is uniformly
-small.</div>
+<p>In both cases, the strain rate invariant equals [;\sqrt{d/2};].
+As shown in <a class="reference internal" href="#figure-2">Figure 2</a>, the main source of error in 2D comes
+from inaccuracies in the solver. <a class="reference internal" href="#figure-3">Figure 3</a> paints a different
+picture in 3D, where the main source of error comes from having
+a finite number of particles.</p>
+<!-- fig:Divergence_v_sri -->
+<div align="center" class="figure">
+<img alt="images/divergence_v.png" src="images/divergence_v.png" style="width: 60%;" />
+<p class="caption"><span class="target" id="figure-1">Figure 1</span>:
+Velocity and Strain Rate Invariant solution
+for the 2D Divergence benchmark. The variation
+in the strain rate invariant is uniformly small.</p>
 </div>
-<div class="figure">
+<!-- fig:Divergence_2D_error -->
+<div align="center" class="figure">
 <img alt="images/divergence_2D_error.png" src="images/divergence_2D_error.png" />
-<p class="caption">Figure [fig:Divergence_2D_error]</p>
-<div class="legend">
-Maximum error in the strain rate invariant for the 2D Divergence
-benchmark vs. tolerance in the linear solver. The resolution is kept at
-[;32 times 32;], and the number of particles per cell is kept at 30.</div>
+<p class="caption"><span class="target" id="figure-2">Figure 2</span>:
+Maximum error in the strain rate invariant for
+the 2D Divergence benchmark vs. tolerance in the
+linear solver. The resolution is kept at [;32 \times 32;],
+and the number of particles per cell is kept at 30.</p>
 </div>
-<div class="figure">
+<!-- fig:Divergence_3D_error -->
+<div align="center" class="figure">
 <img alt="images/divergence_3D_error.png" src="images/divergence_3D_error.png" />
-<p class="caption">Figure [fig:Divergence_3D_error]</p>
-<div class="legend">
-Maximum error in the strain rate invariant for the 3D Divergence
-benchmark vs. the number of particles in each cell. The resolution is
-kept at [;16 \times 16 \times 16;], and the tolerance in the linear
-solver is kept at [;10^{-7};].</div>
+<p class="caption"><span class="target" id="figure-3">Figure 3</span>:
+Maximum error in the strain rate invariant for
+the 3D Divergence benchmark vs. the number of
+particles in each cell. The resolution is kept at
+[;16 \times 16 \times 16;], and the tolerance in
+the linear solver is kept at [;10^{-7};].</p>
 </div>
 </div>
 </body>

Modified: doc/geodynamics.org/benchmarks/trunk/long/divergence.rst
===================================================================
--- doc/geodynamics.org/benchmarks/trunk/long/divergence.rst	2009-10-07 19:15:29 UTC (rev 15782)
+++ doc/geodynamics.org/benchmarks/trunk/long/divergence.rst	2009-10-07 19:15:36 UTC (rev 15783)
@@ -5,9 +5,9 @@
 This benchmark tests the implementation of the divergence term in the
 equation [eq:divergence]. In 2D, a constant divergence is applied to a
 square domain, and the velocity on the corners is set to enforce a
-spreading from the center of the square. Figure [fig:Divergence_v_sri]
-shows the velocity and strain rate invariant for a numerical solution.
-For a constant divergence [;d;], the analytic solution for this setup is
+spreading from the center of the square. `Figure 1`_ shows the velocity
+and strain rate invariant for a numerical solution. For a constant
+divergence [;d;], the analytic solution for this setup is
 
     [;v_x = x \\cdot d/2, v_y = y \\cdot d/2;]
 
@@ -15,34 +15,43 @@
 
     [;v_x = x \\cdot d/3, v_y = y \\cdot d/3, v_z = z \\cdot d/3;]
 
-In both cases, the strain rate invariant equals [;\\sqrt{d/2};]. As shown in
-Figure [fig:Divergence_2D_error], the main source of error in 2D comes
-from inaccuracies in the solver. Figure [fig:Divergence_3D_error] paints
-a different picture in 3D, where the main source of error comes from
-having a finite number of particles.
+In both cases, the strain rate invariant equals [;\\sqrt{d/2};].
+As shown in `Figure 2`_, the main source of error in 2D comes
+from inaccuracies in the solver. `Figure 3`_ paints a different
+picture in 3D, where the main source of error comes from having
+a finite number of particles.
 
+
+.. fig:Divergence_v_sri
 .. figure:: images/divergence_v.png
+   :align: center
+   :width: 60%
 
-   Figure [fig:Divergence_v_sri]
+   _`Figure 1`:
+   Velocity and Strain Rate Invariant solution
+   for the 2D Divergence benchmark. The variation
+   in the strain rate invariant is uniformly small.
 
-   Velocity and Strain Rate Invariant solution for the 2D Divergence
-   benchmark. The variation in the strain rate invariant is uniformly
-   small.
 
+.. fig:Divergence_2D_error
 .. figure:: images/divergence_2D_error.png
+   :align: center
 
-   Figure [fig:Divergence_2D_error]
+   _`Figure 2`:
+   Maximum error in the strain rate invariant for
+   the 2D Divergence benchmark vs. tolerance in the
+   linear solver. The resolution is kept at [;32 \\times 32;],
+   and the number of particles per cell is kept at 30.
 
-   Maximum error in the strain rate invariant for the 2D Divergence
-   benchmark vs. tolerance in the linear solver. The resolution is kept at
-   [;32 \times 32;], and the number of particles per cell is kept at 30.
 
+.. fig:Divergence_3D_error
 .. figure:: images/divergence_3D_error.png
+   :align: center
 
-   Figure [fig:Divergence_3D_error]
+   _`Figure 3`:
+   Maximum error in the strain rate invariant for
+   the 3D Divergence benchmark vs. the number of
+   particles in each cell. The resolution is kept at
+   [;16 \\times 16 \\times 16;], and the tolerance in
+   the linear solver is kept at [;10^{-7};].
 
-   Maximum error in the strain rate invariant for the 3D Divergence
-   benchmark vs. the number of particles in each cell. The resolution is
-   kept at [;16 \\times 16 \\times 16;], and the tolerance in the linear
-   solver is kept at [;10^{-7};].
-



More information about the CIG-COMMITS mailing list