[cig-commits] commit: Updated figures/tables to JGR format (still need more work).

Mercurial hg at geodynamics.org
Tue Mar 27 13:18:14 PDT 2012


changeset:   84:3962a398ee5b
tag:         tip
user:        Brad Aagaard <baagaard at usgs.gov>
date:        Tue Mar 27 13:18:05 2012 -0700
files:       faultRup.tex
description:
Updated figures/tables to JGR format (still need more work).


diff -r 42794a871dad -r 3962a398ee5b faultRup.tex
--- a/faultRup.tex	Tue Mar 27 12:31:57 2012 -0700
+++ b/faultRup.tex	Tue Mar 27 13:18:05 2012 -0700
@@ -1197,25 +1197,23 @@ MGK acknowledges partial support from NS
 % FIGURES
 % ------------------------------------------------------------------
 
-\begin{figure}[htbp]
-  \centering
-  \includegraphics{figs/domaindecomp}
+\begin{figure}
+  \noindent\includegraphics{figs/domaindecomp}
   \caption{Diagram of domain decomposition approach for modeling fault
     slip. The fault slip introduces a jump in the displacement field
     across the fault, whereas the tractions are continuous.}
   \label{fig:domain:decomposition}
 \end{figure}
 
-\begin{figure}[htbp]
-  \centering
+\begin{figure}
   \brad{TODO: ADD DIAGRAM}
-  %\includegraphics{figs/cohesive_cell}
+  %\noindent\includegraphics{figs/cohesive_cell}
   \caption{Construction of cohesive cells for a fault. (a) For each
-    vertex on the fault, introduce a vertex on the negative side of
-    the fault $S_{f^-}$ and a vertex corresponding to the Lagrange
+    vertex on the fault, introduce a vertex on the positive side of
+    the fault $S_{f^+}$ and a vertex corresponding to the Lagrange
     multiplier constraint between the pair of vertices on the positive
     and negative sides of the fault. (b) Replace the vertices in the
-    cell attached to the negative side of the fault with the newly
+    cell attached to the positive side of the fault with the newly
     created vertices. (b) Construct cohesive cells with
     zero volume from the vertices on the positive side of the fault,
     negative side of the fault, and Lagrange multiplier constraints.}
@@ -1227,14 +1225,14 @@ MGK acknowledges partial support from NS
 % TABLES
 % ------------------------------------------------------------------
 
-\begin{table}
-\centering
+\begin{table*}
 \caption{Example preconditioners for the saddle point problem in
   equation~(\ref{eqn:saddle:point}). All of these field split
   preconditioners require the use of the parameters
   \texttt{split\_fields = True} and \texttt{matrix\_type = aij} for
   \texttt{pylithapp.problem.formulation}.}
 \label{tab:solver:options}
+\centering
 \begin{tabular}{ll}
   $\begin{pmatrix}\hat K & 0 \\ 0 & I\end{pmatrix}$ & $\begin{pmatrix}\hat K & L^T \\ 0 & I\end{pmatrix}$ \\
   \texttt{[pylithapp.problem.formulation]}             & \texttt{[pylithapp.problem.formulation]} \\
@@ -1279,9 +1277,15 @@ MGK acknowledges partial support from NS
   \texttt{fieldsplit\_1\_pc\_type = none}                     & \texttt{fieldsplit\_1\_pc\_type = none} \\
   \texttt{fieldsplit\_1\_ksp\_type = minres}                  & \texttt{fieldsplit\_1\_ksp\_type = minres} \\
 \end{tabular}
-\end{table}
+\end{table*}
 
 \begin{table}
+\caption{Performance of Krylov solvers on a problem with 3 faults. Problem 1 (P1) has 25000 unknowns and 645
+  constraints, whereas the larger Problem 2 (P2) has 191,000 unknowns and 2241 constraints. The relative
+  solver tolerance is $10^{-8}$, and the preconditioners used were Additive Schwarz Method (ASM), FieldSplit (FS),
+  Incomplete Cholesky (ICC), algebraic multigrid (ML), Schur complement, least-square commutator (LSC), and a custom
+  preconditioner for the fault problem.}
+\label{tab:iterates}
 \centering
 \begin{tabular}{llrr}
 KSP   & PC              & P1 Iterates & P2 Iterates \\ % Use refine.cfg for P2
@@ -1292,12 +1296,6 @@ GMRES & FS/LSC/ML       &          53 & 
 GMRES & FS/LSC/ML       &          53 &         108 \\ % lsc.cfg
 GMRES & FS/ML/Custom    &          37 &          49 \\ % fieldsplit.cfg custompc.cfg
 \end{tabular}
-\caption{Performance of Krylov solvers on a problem with 3 faults. Problem 1 (P1) has 25000 unknowns and 645
-  constraints, whereas the larger Problem 2 (P2) has 191,000 unknowns and 2241 constraints. The relative
-  solver tolerance is $10^{-8}$, and the preconditioners used were Additive Schwarz Method (ASM), FieldSplit (FS),
-  Incomplete Cholesky (ICC), algebraic multigrid (ML), Schur complement, least-square commutator (LSC), and a custom
-  preconditioner for the fault problem.}
-\label{tab:iterates}
 \end{table}
 
 



More information about the CIG-COMMITS mailing list