[cig-commits] [commit] master: update parameters (395f1c6)

cig_noreply at geodynamics.org cig_noreply at geodynamics.org
Thu Jan 22 14:16:05 PST 2015


Repository : https://github.com/geodynamics/aspect

On branch  : master
Link       : https://github.com/geodynamics/aspect/compare/59e1a2f9609f8666d604a8513b66c1d5f7b326b8...16c51416ab671466458d3c80fd33e77cd7c2e364

>---------------------------------------------------------------

commit 395f1c6ea40b82ce3b96448773003d5200607134
Author: Timo Heister <timo.heister at gmail.com>
Date:   Thu Jan 22 12:16:44 2015 -0500

    update parameters


>---------------------------------------------------------------

395f1c6ea40b82ce3b96448773003d5200607134
 doc/manual/parameters.tex | 98 +++++++++++++++++++++++------------------------
 1 file changed, 49 insertions(+), 49 deletions(-)

diff --git a/doc/manual/parameters.tex b/doc/manual/parameters.tex
index 30c7b8a..5e72863 100644
--- a/doc/manual/parameters.tex
+++ b/doc/manual/parameters.tex
@@ -3034,25 +3034,25 @@ In order to facilitate placing input files in locations relative to the ASPECT s
 
 {\it Description:} Select one of the following models:
 
-`Steinberger': This material model looks up the viscosity from the tables that correspond to the paper of Steinberger and Calderwood 2006 (``Models of large-scale viscous flow in the Earth's mantle with constraints from mineral physics and surface observations'', Geophys. J. Int., 167, 1461-1481, \url{http://dx.doi.org/10.1111/j.1365-246X.2006.03131.x}) and material data from a database generated by the thermodynamics code \texttt{Perplex}, see \url{http://www.perplex.ethz.ch/}. The default example data builds upon the thermodynamic database by Stixrude 2011 and assumes a pyrolitic composition by Ringwood 1988 but is easily replaceable by other data files. 
+`Morency and Doin': An implementation of the visco-plastic rheology described by (Morency and Doin, 2004). Compositional fields can each be assigned individual activation energies, reference densities, thermal expansivities, and stress exponents. The effective viscosity is defined as
 
-`composition reaction': A material model that behaves in the same way as the simple material model, but includes two compositional fields and a reaction between them. Above a depth given in the input file, the first fields gets converted to the second field. 
+ \[v_{eff} = \left(\frac{1}{v_{eff}^v}+\frac{1}{v_{eff}^p}\right)^{-1}\] where \[v_{eff}^v = B \left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_{ref}}\right)^{-1+1/n_v} exp\left(\frac{E_a +V_a \rho_m g z}{n_v R T}\right) \] \[v_{eff}^p = (\tau_0 + \gamma \rho_m g z) \left( \frac{\dot{\varepsilon}^{-1+1/n_p}} {\dot{\varepsilon}_{ref}^{1/n_p}} \right) \]
 
-`latent heat': A material model that includes phase transitions and the possibility that latent heat is released or absorbed when material crosses one of the phase transitions of up to two different materials (compositional fields). This model implements a standard approximation of the latent heat terms following Christensen \& Yuen, 1986. The change of entropy is calculated as $Delta S = \gamma \frac{\Delta\rho}{\rho^2}$ with the Clapeyron slope $\gamma$ and the density change $\Delta\rho$ of the phase transition being input parameters. The model employs an analytic phase function in the form $X=0.5 \left( 1 + \tanh \left( \frac{\Delta p}{\Delta p_0} \right) \right)$ with $\Delta p = p - p_{transition} - \gamma \left( T - T_{transition} \right)$ and $\Delta p_0$ being the pressure difference over the width of the phase transition (specified as input parameter).
+ Where $B$ is a scaling constant, $\dot{\varepsilon}$ is related to the second invariant of the strain rate tensor, $\dot{\varepsilon}_{ref}$ is a reference strain rate, $n_v$ and $n_p$ are stress exponents, $E_a$ is the activation energy, $V_a$ is the activation volume, $\rho_m$ is the mantle density, $R$ is the gas constant, $T$ is temperature, $\tau_0$ is the cohestive strength of rocks at the surface, $\gamma$ is a coefficient of yield stress increase with depth, and $z$ is depth. 
 
-`latent heat melt': A material model that includes the latent heat of melting for two materials: peridotite and pyroxenite. The melting model for peridotite is taken from Katz et al., 2003 (A new parameterization of hydrous mantle melting) and the one for pyroxenite from Sobolev et al., 2011 (Linking mantle plumes, large igneous provinces and environmental catastrophes). The model assumes a constant entropy change for melting 100\% of the material, which can be specified in the input file. The partial derivatives of entropy with respect to temperature and pressure required for calculating the latent heat consumption are then calculated as product of this constant entropy change, and the respective derivative of the function the describes the melt fraction. This is linearly averaged with respect to the fractions of the two materials present. If no compositional fields are specified in the input file, the model assumes that the material is peridotite. If compositional fields are speci
 fied, the model assumes that the first compositional field is the fraction of pyroxenite and the rest of the material is peridotite. 
+ Morency, C., and M‐P. Doin. "Numerical simulations of the mantle lithosphere delamination." Journal of Geophysical Research: Solid Earth (1978–2012) 109.B3 (2004).
 
-Otherwise, this material model has a temperature- and pressure-dependent density and viscosity and the density and thermal expansivity depend on the melt fraction present. It is possible to extent this model to include a melt fraction dependence of all the material parameters by calling the function melt\_fraction in the calculation of the respective parameter. However, melt and solid move with the same velocity and melt extraction is not taken into account (batch melting). 
+ The value for the components of this formula and additional parameters are read from the parameter file in subsection 'Material model/Morency and Doin'.
 
-`morency doin': An implementation of the visco-plastic rheology described by (Morency and Doin, 2004). Compositional fields can each be assigned individual activation energies, reference densities, thermal expansivities, and stress exponents. The effective viscosity is defined as
+`Steinberger': This material model looks up the viscosity from the tables that correspond to the paper of Steinberger and Calderwood 2006 (``Models of large-scale viscous flow in the Earth's mantle with constraints from mineral physics and surface observations'', Geophys. J. Int., 167, 1461-1481, \url{http://dx.doi.org/10.1111/j.1365-246X.2006.03131.x}) and material data from a database generated by the thermodynamics code \texttt{Perplex}, see \url{http://www.perplex.ethz.ch/}. The default example data builds upon the thermodynamic database by Stixrude 2011 and assumes a pyrolitic composition by Ringwood 1988 but is easily replaceable by other data files. 
 
- \[v_{eff} = \left(\frac{1}{v_{eff}^v}+\frac{1}{v_{eff}^p}\right)^{-1}\] where \[v_{eff}^v = B \left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_{ref}}\right)^{-1+1/n_v} exp\left(\frac{E_a +V_a \rho_m g z}{n_v R T}\right) \] \[v_{eff}^p = (\tau_0 + \gamma \rho_m g z) \left( \frac{\dot{\varepsilon}^{-1+1/n_p}} {\dot{\varepsilon}_{ref}^{1/n_p}} \right) \]
+`composition reaction': A material model that behaves in the same way as the simple material model, but includes two compositional fields and a reaction between them. Above a depth given in the input file, the first fields gets converted to the second field. 
 
- Where $B$ is a scaling constant, $\dot{\varepsilon}$ is related to the second invariant of the strain rate tensor, $\dot{\varepsilon}_{ref}$ is a reference strain rate, $n_v$ and $n_p$ are stress exponents, $E_a$ is the activation energy, $V_a$ is the activation volume, $\rho_m$ is the mantle density, $R$ is the gas constant, $T$ is temperature, $\tau_0$ is the cohestive strength of rocks at the surface, $\gamma$ is a coefficient of yield stress increase with depth, and $z$ is depth. 
+`latent heat': A material model that includes phase transitions and the possibility that latent heat is released or absorbed when material crosses one of the phase transitions of up to two different materials (compositional fields). This model implements a standard approximation of the latent heat terms following Christensen \& Yuen, 1986. The change of entropy is calculated as $Delta S = \gamma \frac{\Delta\rho}{\rho^2}$ with the Clapeyron slope $\gamma$ and the density change $\Delta\rho$ of the phase transition being input parameters. The model employs an analytic phase function in the form $X=0.5 \left( 1 + \tanh \left( \frac{\Delta p}{\Delta p_0} \right) \right)$ with $\Delta p = p - p_{transition} - \gamma \left( T - T_{transition} \right)$ and $\Delta p_0$ being the pressure difference over the width of the phase transition (specified as input parameter).
 
- Morency, C., and M‐P. Doin. "Numerical simulations of the mantle lithosphere delamination." Journal of Geophysical Research: Solid Earth (1978–2012) 109.B3 (2004).
+`latent heat melt': A material model that includes the latent heat of melting for two materials: peridotite and pyroxenite. The melting model for peridotite is taken from Katz et al., 2003 (A new parameterization of hydrous mantle melting) and the one for pyroxenite from Sobolev et al., 2011 (Linking mantle plumes, large igneous provinces and environmental catastrophes). The model assumes a constant entropy change for melting 100\% of the material, which can be specified in the input file. The partial derivatives of entropy with respect to temperature and pressure required for calculating the latent heat consumption are then calculated as product of this constant entropy change, and the respective derivative of the function the describes the melt fraction. This is linearly averaged with respect to the fractions of the two materials present. If no compositional fields are specified in the input file, the model assumes that the material is peridotite. If compositional fields are speci
 fied, the model assumes that the first compositional field is the fraction of pyroxenite and the rest of the material is peridotite. 
 
- The value for the components of this formula and additional parameters are read from the parameter file in subsection 'Material model/Morency'.
+Otherwise, this material model has a temperature- and pressure-dependent density and viscosity and the density and thermal expansivity depend on the melt fraction present. It is possible to extent this model to include a melt fraction dependence of all the material parameters by calling the function melt\_fraction in the calculation of the respective parameter. However, melt and solid move with the same velocity and melt extraction is not taken into account (batch melting). 
 
 `multicomponent': This model is for use with an arbitrary number of compositional fields, where each field represents a rock type which can have completely different properties from the others. However, each rock type itself has constant material properties.  The value of the  compositional field is interpreed as a volume fraction. If the sum of the fields is greater than one, they are renormalized.  If it is less than one, material properties  for ``background mantle'' make up the rest. When more than one field is present, the material properties are averaged arithmetically.  An exception is the viscosity, where the averaging should make more of a difference.  For this, the user selects between arithmetic, harmonic, geometric, or maximum composition averaging.
 
@@ -3081,7 +3081,7 @@ This model uses the following equations for the density: \begin{align}  \rho(p,T
 `table': A material model that reads tables of pressure and temperature dependent material coefficients from files. The default values for this model's runtime parameters use a material description taken from the paper \textit{Complex phase distribution and seismic velocity structure of the transition zone: Convection model predictions for a magnesium-endmember olivine-pyroxene mantle} by Michael H.G. Jacobs and Arie P. van den Berg, Physics of the Earth and Planetary Interiors, Volume 186, Issues 1-2, May 2011, Pages 36--48. See \url{http://www.sciencedirect.com/science/article/pii/S0031920111000422}.
 
 
-{\it Possible values:} [Selection Steinberger|composition reaction|latent heat|latent heat melt|morency doin|multicomponent|simple|simple compressible|simpler|table ]
+{\it Possible values:} [Selection Morency and Doin|Steinberger|composition reaction|latent heat|latent heat melt|multicomponent|simple|simple compressible|simpler|table ]
 \end{itemize}
 
 
@@ -4112,16 +4112,16 @@ This model uses the following equations for the density: \begin{align}  \rho(p,T
 {\it Possible values:} [Double -1.79769e+308...1.79769e+308 (inclusive)]
 \end{itemize}
 
-\subsection{Parameters in section \tt Material model/Morency}
-\label{parameters:Material_20model/Morency}
+\subsection{Parameters in section \tt Material model/Morency and Doin}
+\label{parameters:Material_20model/Morency_20and_20Doin}
 
 \begin{itemize}
 \item {\it Parameter name:} {\tt Activation energies}
-\phantomsection\label{parameters:Material model/Morency/Activation energies}
+\phantomsection\label{parameters:Material model/Morency and Doin/Activation energies}
 
 
 \index[prmindex]{Activation energies}
-\index[prmindexfull]{Material model!Morency!Activation energies}
+\index[prmindexfull]{Material model!Morency and Doin!Activation energies}
 {\it Value:} 500
 
 
@@ -4133,11 +4133,11 @@ This model uses the following equations for the density: \begin{align}  \rho(p,T
 
 {\it Possible values:} [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]
 \item {\it Parameter name:} {\tt Activation volume}
-\phantomsection\label{parameters:Material model/Morency/Activation volume}
+\phantomsection\label{parameters:Material model/Morency and Doin/Activation volume}
 
 
 \index[prmindex]{Activation volume}
-\index[prmindexfull]{Material model!Morency!Activation volume}
+\index[prmindexfull]{Material model!Morency and Doin!Activation volume}
 {\it Value:} 6.4e-6
 
 
@@ -4149,11 +4149,11 @@ This model uses the following equations for the density: \begin{align}  \rho(p,T
 
 {\it Possible values:} [Double 0...1.79769e+308 (inclusive)]
 \item {\it Parameter name:} {\tt Coefficient of yield stress increase with depth}
-\phantomsection\label{parameters:Material model/Morency/Coefficient of yield stress increase with depth}
+\phantomsection\label{parameters:Material model/Morency and Doin/Coefficient of yield stress increase with depth}
 
 
 \index[prmindex]{Coefficient of yield stress increase with depth}
-\index[prmindexfull]{Material model!Morency!Coefficient of yield stress increase with depth}
+\index[prmindexfull]{Material model!Morency and Doin!Coefficient of yield stress increase with depth}
 {\it Value:} 0.25
 
 
@@ -4165,11 +4165,11 @@ This model uses the following equations for the density: \begin{align}  \rho(p,T
 
 {\it Possible values:} [Double 0...1.79769e+308 (inclusive)]
 \item {\it Parameter name:} {\tt Cohesive strength of rocks at the surface}
-\phantomsection\label{parameters:Material model/Morency/Cohesive strength of rocks at the surface}
+\phantomsection\label{parameters:Material model/Morency and Doin/Cohesive strength of rocks at the surface}
 
 
 \index[prmindex]{Cohesive strength of rocks at the surface}
-\index[prmindexfull]{Material model!Morency!Cohesive strength of rocks at the surface}
+\index[prmindexfull]{Material model!Morency and Doin!Cohesive strength of rocks at the surface}
 {\it Value:} 117
 
 
@@ -4181,11 +4181,11 @@ This model uses the following equations for the density: \begin{align}  \rho(p,T
 
 {\it Possible values:} [Double 0...1.79769e+308 (inclusive)]
 \item {\it Parameter name:} {\tt Densities}
-\phantomsection\label{parameters:Material model/Morency/Densities}
+\phantomsection\label{parameters:Material model/Morency and Doin/Densities}
 
 
 \index[prmindex]{Densities}
-\index[prmindexfull]{Material model!Morency!Densities}
+\index[prmindexfull]{Material model!Morency and Doin!Densities}
 {\it Value:} 3300.
 
 
@@ -4197,11 +4197,11 @@ This model uses the following equations for the density: \begin{align}  \rho(p,T
 
 {\it Possible values:} [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]
 \item {\it Parameter name:} {\tt Effective viscosity coefficient}
-\phantomsection\label{parameters:Material model/Morency/Effective viscosity coefficient}
+\phantomsection\label{parameters:Material model/Morency and Doin/Effective viscosity coefficient}
 
 
 \index[prmindex]{Effective viscosity coefficient}
-\index[prmindexfull]{Material model!Morency!Effective viscosity coefficient}
+\index[prmindexfull]{Material model!Morency and Doin!Effective viscosity coefficient}
 {\it Value:} 1.0
 
 
@@ -4213,11 +4213,11 @@ This model uses the following equations for the density: \begin{align}  \rho(p,T
 
 {\it Possible values:} [Double 0...1.79769e+308 (inclusive)]
 \item {\it Parameter name:} {\tt Heat capacity}
-\phantomsection\label{parameters:Material model/Morency/Heat capacity}
+\phantomsection\label{parameters:Material model/Morency and Doin/Heat capacity}
 
 
 \index[prmindex]{Heat capacity}
-\index[prmindexfull]{Material model!Morency!Heat capacity}
+\index[prmindexfull]{Material model!Morency and Doin!Heat capacity}
 {\it Value:} 1.25e3
 
 
@@ -4229,11 +4229,11 @@ This model uses the following equations for the density: \begin{align}  \rho(p,T
 
 {\it Possible values:} [Double 0...1.79769e+308 (inclusive)]
 \item {\it Parameter name:} {\tt Maximum viscosity}
-\phantomsection\label{parameters:Material model/Morency/Maximum viscosity}
+\phantomsection\label{parameters:Material model/Morency and Doin/Maximum viscosity}
 
 
 \index[prmindex]{Maximum viscosity}
-\index[prmindexfull]{Material model!Morency!Maximum viscosity}
+\index[prmindexfull]{Material model!Morency and Doin!Maximum viscosity}
 {\it Value:} 1e28
 
 
@@ -4245,11 +4245,11 @@ This model uses the following equations for the density: \begin{align}  \rho(p,T
 
 {\it Possible values:} [Double 0...1.79769e+308 (inclusive)]
 \item {\it Parameter name:} {\tt Minimum strain rate}
-\phantomsection\label{parameters:Material model/Morency/Minimum strain rate}
+\phantomsection\label{parameters:Material model/Morency and Doin/Minimum strain rate}
 
 
 \index[prmindex]{Minimum strain rate}
-\index[prmindexfull]{Material model!Morency!Minimum strain rate}
+\index[prmindexfull]{Material model!Morency and Doin!Minimum strain rate}
 {\it Value:} 1.4e-20
 
 
@@ -4261,11 +4261,11 @@ This model uses the following equations for the density: \begin{align}  \rho(p,T
 
 {\it Possible values:} [Double 0...1.79769e+308 (inclusive)]
 \item {\it Parameter name:} {\tt Minimum viscosity}
-\phantomsection\label{parameters:Material model/Morency/Minimum viscosity}
+\phantomsection\label{parameters:Material model/Morency and Doin/Minimum viscosity}
 
 
 \index[prmindex]{Minimum viscosity}
-\index[prmindexfull]{Material model!Morency!Minimum viscosity}
+\index[prmindexfull]{Material model!Morency and Doin!Minimum viscosity}
 {\it Value:} 1e17
 
 
@@ -4277,11 +4277,11 @@ This model uses the following equations for the density: \begin{align}  \rho(p,T
 
 {\it Possible values:} [Double 0...1.79769e+308 (inclusive)]
 \item {\it Parameter name:} {\tt Preexponential constant for viscous rheology law}
-\phantomsection\label{parameters:Material model/Morency/Preexponential constant for viscous rheology law}
+\phantomsection\label{parameters:Material model/Morency and Doin/Preexponential constant for viscous rheology law}
 
 
 \index[prmindex]{Preexponential constant for viscous rheology law}
-\index[prmindexfull]{Material model!Morency!Preexponential constant for viscous rheology law}
+\index[prmindexfull]{Material model!Morency and Doin!Preexponential constant for viscous rheology law}
 {\it Value:} 1.24e14
 
 
@@ -4293,11 +4293,11 @@ This model uses the following equations for the density: \begin{align}  \rho(p,T
 
 {\it Possible values:} [Double 0...1.79769e+308 (inclusive)]
 \item {\it Parameter name:} {\tt Reference strain rate}
-\phantomsection\label{parameters:Material model/Morency/Reference strain rate}
+\phantomsection\label{parameters:Material model/Morency and Doin/Reference strain rate}
 
 
 \index[prmindex]{Reference strain rate}
-\index[prmindexfull]{Material model!Morency!Reference strain rate}
+\index[prmindexfull]{Material model!Morency and Doin!Reference strain rate}
 {\it Value:} 6.4e-16
 
 
@@ -4309,11 +4309,11 @@ This model uses the following equations for the density: \begin{align}  \rho(p,T
 
 {\it Possible values:} [Double 0...1.79769e+308 (inclusive)]
 \item {\it Parameter name:} {\tt Reference temperature}
-\phantomsection\label{parameters:Material model/Morency/Reference temperature}
+\phantomsection\label{parameters:Material model/Morency and Doin/Reference temperature}
 
 
 \index[prmindex]{Reference temperature}
-\index[prmindexfull]{Material model!Morency!Reference temperature}
+\index[prmindexfull]{Material model!Morency and Doin!Reference temperature}
 {\it Value:} 293
 
 
@@ -4325,11 +4325,11 @@ This model uses the following equations for the density: \begin{align}  \rho(p,T
 
 {\it Possible values:} [Double 0...1.79769e+308 (inclusive)]
 \item {\it Parameter name:} {\tt Reference viscosity}
-\phantomsection\label{parameters:Material model/Morency/Reference viscosity}
+\phantomsection\label{parameters:Material model/Morency and Doin/Reference viscosity}
 
 
 \index[prmindex]{Reference viscosity}
-\index[prmindexfull]{Material model!Morency!Reference viscosity}
+\index[prmindexfull]{Material model!Morency and Doin!Reference viscosity}
 {\it Value:} 1e22
 
 
@@ -4341,11 +4341,11 @@ This model uses the following equations for the density: \begin{align}  \rho(p,T
 
 {\it Possible values:} [Double 0...1.79769e+308 (inclusive)]
 \item {\it Parameter name:} {\tt Stress exponents for plastic rheology}
-\phantomsection\label{parameters:Material model/Morency/Stress exponents for plastic rheology}
+\phantomsection\label{parameters:Material model/Morency and Doin/Stress exponents for plastic rheology}
 
 
 \index[prmindex]{Stress exponents for plastic rheology}
-\index[prmindexfull]{Material model!Morency!Stress exponents for plastic rheology}
+\index[prmindexfull]{Material model!Morency and Doin!Stress exponents for plastic rheology}
 {\it Value:} 30
 
 
@@ -4357,11 +4357,11 @@ This model uses the following equations for the density: \begin{align}  \rho(p,T
 
 {\it Possible values:} [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]
 \item {\it Parameter name:} {\tt Stress exponents for viscous rheology}
-\phantomsection\label{parameters:Material model/Morency/Stress exponents for viscous rheology}
+\phantomsection\label{parameters:Material model/Morency and Doin/Stress exponents for viscous rheology}
 
 
 \index[prmindex]{Stress exponents for viscous rheology}
-\index[prmindexfull]{Material model!Morency!Stress exponents for viscous rheology}
+\index[prmindexfull]{Material model!Morency and Doin!Stress exponents for viscous rheology}
 {\it Value:} 3
 
 
@@ -4373,11 +4373,11 @@ This model uses the following equations for the density: \begin{align}  \rho(p,T
 
 {\it Possible values:} [List list of [Double 0...1.79769e+308 (inclusive)] of length 0...4294967295 (inclusive)]
 \item {\it Parameter name:} {\tt Thermal diffusivity}
-\phantomsection\label{parameters:Material model/Morency/Thermal diffusivity}
+\phantomsection\label{parameters:Material model/Morency and Doin/Thermal diffusivity}
 
 
 \index[prmindex]{Thermal diffusivity}
-\index[prmindexfull]{Material model!Morency!Thermal diffusivity}
+\index[prmindexfull]{Material model!Morency and Doin!Thermal diffusivity}
 {\it Value:} 0.8e-6
 
 
@@ -4389,11 +4389,11 @@ This model uses the following equations for the density: \begin{align}  \rho(p,T
 
 {\it Possible values:} [Double 0...1.79769e+308 (inclusive)]
 \item {\it Parameter name:} {\tt Thermal expansivities}
-\phantomsection\label{parameters:Material model/Morency/Thermal expansivities}
+\phantomsection\label{parameters:Material model/Morency and Doin/Thermal expansivities}
 
 
 \index[prmindex]{Thermal expansivities}
-\index[prmindexfull]{Material model!Morency!Thermal expansivities}
+\index[prmindexfull]{Material model!Morency and Doin!Thermal expansivities}
 {\it Value:} 3.5e-5
 
 



More information about the CIG-COMMITS mailing list