[CIG-LONG] Gale, boundary velocity

Walter Landry walter at geodynamics.org
Mon Nov 9 00:29:44 PST 2009


"Li Yanyou" <wbjlyy at 126.com> wrote:
> Dear Sir/Madam
>   Thank you for your answer. There are two questions about using
>   Gale as follows
> 1:How to deal with bottom velocity change in compression model with
> both Left and Right walls moving in Gale. About the details,see the
> attached,please (attachment model).

If I understand correctly, the rubber sheet is attached to the moving
walls.  That means that there is a velocity discontinuity between the
plate and the sheet.  I implemented this, and I am attaching modified
versions of

  src/StgFEM/plugins/StandardConditionFunctions/StandardConditionFunctions.c
  src/StgFEM/plugins/StandardConditionFunctions/StandardConditionFunctions.h

Also find a sample input file

  rubber.xml

that demonstrates it and a flash movie of the velocity and strain rate
invariant.

> 2:Pre-existing faults have a great effect on structure evolution of
> rift basins. How to deal whit pre-existing fault in Gale.

When you set up your materials, you can define a shape where the
material in that shape will be pre-damaged.  Specifically,
StrainWeakening takes "initialStrainShape" and a number of Damage
parameters.  It is detailed in Section A.5.3.1.

So for Cookbook "Yielding Material in Simple Extension" in Section
5.11, you would change "initialDamageFraction" to 1.0 and add

  <param name="initialStrainShape">damageShape</param>

Once you define "damageShape", then material within that shape will
have some initial damage.

Cheers,
Walter Landry
walter at geodynamics.org
-------------- next part --------------
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**
** Copyright (C), 2003-2006, Victorian Partnership for Advanced Computing (VPAC) Ltd, 110 Victoria Street,
**	Melbourne, 3053, Australia.
**
** Primary Contributing Organisations:
**	Victorian Partnership for Advanced Computing Ltd, Computational Software Development - http://csd.vpac.org
**	Australian Computational Earth Systems Simulator - http://www.access.edu.au
**	Monash Cluster Computing - http://www.mcc.monash.edu.au
**	Computational Infrastructure for Geodynamics - http://www.geodynamics.org
**
** Contributors:
**	Patrick D. Sunter, Software Engineer, VPAC. (pds at vpac.org)
**	Robert Turnbull, Research Assistant, Monash University. (robert.turnbull at sci.monash.edu.au)
**	Stevan M. Quenette, Senior Software Engineer, VPAC. (steve at vpac.org)
**	David May, PhD Student, Monash University (david.may at sci.monash.edu.au)
**	Louis Moresi, Associate Professor, Monash University. (louis.moresi at sci.monash.edu.au)
**	Luke J. Hodkinson, Computational Engineer, VPAC. (lhodkins at vpac.org)
**	Alan H. Lo, Computational Engineer, VPAC. (alan at vpac.org)
**	Raquibul Hassan, Computational Engineer, VPAC. (raq at vpac.org)
**	Julian Giordani, Research Assistant, Monash University. (julian.giordani at sci.monash.edu.au)
**	Vincent Lemiale, Postdoctoral Fellow, Monash University. (vincent.lemiale at sci.monash.edu.au)
**
**  This library is free software; you can redistribute it and/or
**  modify it under the terms of the GNU Lesser General Public
**  License as published by the Free Software Foundation; either
**  version 2.1 of the License, or (at your option) any later version.
**
**  This library is distributed in the hope that it will be useful,
**  but WITHOUT ANY WARRANTY; without even the implied warranty of
**  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
**  Lesser General Public License for more details.
**
**  You should have received a copy of the GNU Lesser General Public
**  License along with this library; if not, write to the Free Software
**  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
**
*/
/** \file
** Role:
**	Defines any header info, such as new structures, needed by this plugin
**
** Assumptions:
**
** Comments:
**
** $Id $
**
**~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

#ifndef __StgFEM_StandardConditionFunctions_h__
#define __StgFEM_StandardConditionFunctions_h__

extern const Type StgFEM_StandardConditionFunctions_Type;

typedef struct {
	__Codelet
} StgFEM_StandardConditionFunctions;

Index StgFEM_StandardConditionFunctions_Register( PluginsManager* pluginsManager );

void StgFEM_StandardConditionFunctions_SolidBodyRotation( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StgFEM_StandardConditionFunctions_PartialRotationX( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StgFEM_StandardConditionFunctions_PartialRotationY( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StgFEM_StandardConditionFunctions_TaperedRotationX( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StgFEM_StandardConditionFunctions_TaperedRotationY( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StgFEM_StandardConditionFunctions_SimpleShear( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StgFEM_StandardConditionFunctions_ShearZ( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StgFEM_StandardConditionFunctions_Extension( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StgFEM_StandardConditionFunctions_PartialLid_TopLayer( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* result ) ;
void StgFEM_StandardConditionFunctions_LinearInterpolationLid( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* result ) ;
void StgFEM_StandardConditionFunctions_Lid_RampWithCentralMax( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* result ) ;


void StgFEM_StandardConditionFunctions_SinusoidalLid( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* result ) ;
void StgFEM_StandardConditionFunctions_CornerOnly( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* result ) ;
void StgFEM_StandardConditionFunctions_TemperatureCosineHill( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StgFEM_StandardConditionFunctions_LinearWithSinusoidalPerturbation( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StgFEM_StandardConditionFunctions_Trigonometry( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void Stg_FEM_VelicTemperatureIC( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void Stg_FEM_VelicTemperatureIC_SolB( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StgFEM_StandardConditionFunctions_AnalyticalTemperatureIC( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StgFEM_StandardConditionFunctions_SinusoidalExtension( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StgFEM_StandardConditionFunctions_EdgeDriveConvectionIC( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result );
void StgFEM_StandardConditionFunctions_StepFunction( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StG_FEM_StandardConditionFunctions_StepFunctionProduct1( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StG_FEM_StandardConditionFunctions_StepFunctionProduct2( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StG_FEM_StandardConditionFunctions_StepFunctionProduct3( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StG_FEM_StandardConditionFunctions_StepFunctionProduct4( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StgFEM_StandardConditionFunctions_TemperatureProfile( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StG_FEM_StandardConditionFunctions_Gaussian( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;

void StgFEM_StandardConditionFunctions_ConvectionBenchmark( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) ;
void StgFEM_StandardConditionFunctions_ConstantVelocity( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result );
void StgFEM_StandardConditionFunctions_ERF( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result );
void StgFEM_StandardConditionFunctions_ERFC( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result );
void StgFEM_StandardConditionFunctions_RubberSheet( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result );

#endif	
-------------- next part --------------
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**
** Copyright (C), 2003-2006, Victorian Partnership for Advanced Computing (VPAC) Ltd, 110 Victoria Street,
**	Melbourne, 3053, Australia.
**
** Primary Contributing Organisations:
**	Victorian Partnership for Advanced Computing Ltd, Computational Software Development - http://csd.vpac.org
**	Australian Computational Earth Systems Simulator - http://www.access.edu.au
**	Monash Cluster Computing - http://www.mcc.monash.edu.au
**	Computational Infrastructure for Geodynamics - http://www.geodynamics.org
**
** Contributors:
**	Patrick D. Sunter, Software Engineer, VPAC. (pds at vpac.org)
**	Robert Turnbull, Research Assistant, Monash University. (robert.turnbull at sci.monash.edu.au)
**	Stevan M. Quenette, Senior Software Engineer, VPAC. (steve at vpac.org)
**	David May, PhD Student, Monash University (david.may at sci.monash.edu.au)
**	Louis Moresi, Associate Professor, Monash University. (louis.moresi at sci.monash.edu.au)
**	Luke J. Hodkinson, Computational Engineer, VPAC. (lhodkins at vpac.org)
**	Alan H. Lo, Computational Engineer, VPAC. (alan at vpac.org)
**	Raquibul Hassan, Computational Engineer, VPAC. (raq at vpac.org)
**	Julian Giordani, Research Assistant, Monash University. (julian.giordani at sci.monash.edu.au)
**	Vincent Lemiale, Postdoctoral Fellow, Monash University. (vincent.lemiale at sci.monash.edu.au)
**
**  This library is free software; you can redistribute it and/or
**  modify it under the terms of the GNU Lesser General Public
**  License as published by the Free Software Foundation; either
**  version 2.1 of the License, or (at your option) any later version.
**
**  This library is distributed in the hope that it will be useful,
**  but WITHOUT ANY WARRANTY; without even the implied warranty of
**  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
**  Lesser General Public License for more details.
**
**  You should have received a copy of the GNU Lesser General Public
**  License along with this library; if not, write to the Free Software
**  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
**
** $Id: /cig/src/StgFEM/plugins/StandardConditionFunctions/StandardConditionFunctions.c 2654 2009-04-16T13:38:49.399106Z boo  $
**
**~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

#include <mpi.h>
#include <StGermain/StGermain.h>
#include <StgFEM/StgFEM.h>
#include <assert.h>
#include "StandardConditionFunctions.h"

const Type StgFEM_StandardConditionFunctions_Type = "StgFEM_StandardConditionFunctions";

void _StgFEM_StandardConditionFunctions_Construct( void* component, Stg_ComponentFactory* cf, void* data ) {
	AbstractContext*        context;
	ConditionFunction*      condFunc;

	context = (AbstractContext*)Stg_ComponentFactory_ConstructByName( cf, "context", AbstractContext, True, data ); 
	
	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_SolidBodyRotation, "Velocity_SolidBodyRotation" );
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );
	
	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_PartialRotationX, "Velocity_PartialRotationX" );
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );
		
	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_PartialRotationY, "Velocity_PartialRotationY" );
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );
	
	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_TaperedRotationX, "TaperedRotationX" );
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );
		
	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_TaperedRotationY, "TaperedRotationY" );
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );
	
	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_SimpleShear, "Velocity_SimpleShear" );
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );
	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_ShearZ, "ShearZ" );
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );
	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_Extension, "Velocity_Extension" );
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );

	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_PartialLid_TopLayer, "Velocity_PartialLid_TopLayer" );
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );

	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_Trigonometry, "Temperature_Trigonometry" );
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );
	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_LinearInterpolationLid, "Velocity_LinearInterpolationLid" );
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );

	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_Lid_RampWithCentralMax, "Velocity_Lid_RampWithCentralMax" );
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );

	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_SinusoidalLid, "Velocity_SinusoidalLid" );
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );

	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_CornerOnly, "Velocity_Lid_CornerOnly" );
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );
	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_TemperatureCosineHill, "Temperature_CosineHill" );
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );
	
	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_ConvectionBenchmark, "Temperature_ConvectionBenchmark" );
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );
	
	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_LinearWithSinusoidalPerturbation, "LinearWithSinusoidalPerturbation" );
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );

	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_EdgeDriveConvectionIC, "EdgeDriveConvectionIC" );
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );
	
	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_AnalyticalTemperatureIC, "AnalyticalTemperatureIC" );
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );
	condFunc = ConditionFunction_New( Stg_FEM_VelicTemperatureIC, "VelicTemperatureIC");
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );
	condFunc = ConditionFunction_New( Stg_FEM_VelicTemperatureIC_SolB, "VelicTemperatureIC_SolB");
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );
	
	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_SinusoidalExtension, "SinusoidalExtension");
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );

	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_StepFunction, "StepFunction");
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );

	condFunc = ConditionFunction_New( StG_FEM_StandardConditionFunctions_StepFunctionProduct1, "StepFunctionProduct1");
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );

	condFunc = ConditionFunction_New( StG_FEM_StandardConditionFunctions_StepFunctionProduct2, "StepFunctionProduct2");
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );

	condFunc = ConditionFunction_New( StG_FEM_StandardConditionFunctions_StepFunctionProduct3, "StepFunctionProduct3");
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );

	condFunc = ConditionFunction_New( StG_FEM_StandardConditionFunctions_StepFunctionProduct4, "StepFunctionProduct4");
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );

	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_TemperatureProfile, "TemperatureProfile");
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );

	condFunc = ConditionFunction_New( StG_FEM_StandardConditionFunctions_Gaussian, "Gaussian");
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );

	condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_ConstantVelocity, "ConstantVelocity");
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );

	condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_ERF,
                                         "ERF");
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );

	condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_ERFC,
                                         "ERFC");
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );

	condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_RubberSheet,
                                         "RubberSheet");
	ConditionFunction_Register_Add( context->condFunc_Register, condFunc );
}

void* _StgFEM_StandardConditionFunctions_DefaultNew( Name name ) {
	return Codelet_New(
		StgFEM_StandardConditionFunctions_Type,
		_StgFEM_StandardConditionFunctions_DefaultNew,
		_StgFEM_StandardConditionFunctions_Construct,
		_Codelet_Build,
		_Codelet_Initialise,
		_Codelet_Execute,
		_Codelet_Destroy,
		name );
}

Index StgFEM_StandardConditionFunctions_Register( PluginsManager* pluginsManager ) {
	Journal_DPrintf( StgFEM_Debug, "In: %s( void* )\n", __func__ );

	return PluginsManager_Submit( pluginsManager, StgFEM_StandardConditionFunctions_Type, "0", _StgFEM_StandardConditionFunctions_DefaultNew );
}


#ifdef NO_ERF

/* Copied from the OpenBSD iplementation of erf.c
   (src/lib/libm/src/erf.c and src/lib/libm/src/math_private.h).
   Modified to only work on 32 bit little endian machines.
   This is just a hack for Windows machines. */

/* @(#)s_erf.c 5.1 93/09/24 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice 
 * is preserved.
 * ====================================================
 */

/* double erf(double x)
 * double erfc(double x)
 *                           x
 *                    2      |\
 *     erf(x)  =  ---------  | exp(-t*t)dt
 *                  sqrt(pi) \| 
 *                           0
 *
 *     erfc(x) =  1-erf(x)
 *  Note that 
 *              erf(-x) = -erf(x)
 *              erfc(-x) = 2 - erfc(x)
 *
 * Method:
 *      1. For |x| in [0, 0.84375]
 *          erf(x)  = x + x*R(x^2)
 *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
 *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
 *         where R = P/Q where P is an odd poly of degree 8 and
 *         Q is an odd poly of degree 10.
 *                                               -57.90
 *                      | R - (erf(x)-x)/x | <= 2
 *      
 *
 *         Remark. The formula is derived by noting
 *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
 *         and that
 *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
 *         is close to one. The interval is chosen because the fix
 *         point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
 *         near 0.6174), and by some experiment, 0.84375 is chosen to
 *         guarantee the error is less than one ulp for erf.
 *
 *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
 *         c = 0.84506291151 rounded to single (24 bits)
 *              erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
 *              erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
 *                        1+(c+P1(s)/Q1(s))    if x < 0
 *              |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
 *         Remark: here we use the taylor series expansion at x=1.
 *              erf(1+s) = erf(1) + s*Poly(s)
 *                       = 0.845.. + P1(s)/Q1(s)
 *         That is, we use rational approximation to approximate
 *                      erf(1+s) - (c = (single)0.84506291151)
 *         Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
 *         where 
 *              P1(s) = degree 6 poly in s
 *              Q1(s) = degree 6 poly in s
 *
 *      3. For x in [1.25,1/0.35(~2.857143)], 
 *              erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
 *              erf(x)  = 1 - erfc(x)
 *         where 
 *              R1(z) = degree 7 poly in z, (z=1/x^2)
 *              S1(z) = degree 8 poly in z
 *
 *      4. For x in [1/0.35,28]
 *              erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
 *                      = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
 *                      = 2.0 - tiny                (if x <= -6)
 *              erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
 *              erf(x)  = sign(x)*(1.0 - tiny)
 *         where
 *              R2(z) = degree 6 poly in z, (z=1/x^2)
 *              S2(z) = degree 7 poly in z
 *
 *      Note1:
 *         To compute exp(-x*x-0.5625+R/S), let s be a single
 *         precision number and s := x; then
 *              -x*x = -s*s + (s-x)*(s+x)
 *              exp(-x*x-0.5626+R/S) = 
 *                      exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
 *      Note2:
 *         Here 4 and 5 make use of the asymptotic series
 *                        exp(-x*x)
 *              erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
 *                        x*sqrt(pi)
 *         We use rational approximation to approximate
 *              g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
 *         Here is the error bound for R1/S1 and R2/S2
 *              |R1/S1 - f(x)|  < 2**(-62.57)
 *              |R2/S2 - f(x)|  < 2**(-61.52)
 *
 *      5. For inf > x >= 28
 *              erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
 *              erfc(x) = tiny*tiny (raise underflow) if x > 0
 *                      = 2 - tiny if x<0
 *
 *      7. Special case:
 *              erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
 *              erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, 
 *                 erfc/erf(NaN) is NaN
 */

/*  Assume little endian, 32 bit machines  */

typedef int int32_t;
typedef unsigned int u_int32_t;

typedef union
{
  double value;
  struct
  {
    u_int32_t lsw;
    u_int32_t msw;
  } parts;
} ieee_double_shape_type;

/* Get the more significant 32 bit int from a double.  */

#define GET_HIGH_WORD(i,d)                                      \
do {                                                            \
  ieee_double_shape_type gh_u;                                  \
  gh_u.value = (d);                                             \
  (i) = gh_u.parts.msw;                                         \
} while (0)

/* Set the less significant 32 bits of a double from an int.  */

#define SET_LOW_WORD(d,v)                                       \
do {                                                            \
  ieee_double_shape_type sl_u;                                  \
  sl_u.value = (d);                                             \
  sl_u.parts.lsw = (v);                                         \
  (d) = sl_u.value;                                             \
} while (0)


static const double
tiny        = 1e-300,
half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
        /* c = (float)0.84506291151 */
erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
/*
 * Coefficients for approximation to  erf on [0,0.84375]
 */
efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
/*
 * Coefficients for approximation to  erf  in [0.84375,1.25] 
 */
pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
/*
 * Coefficients for approximation to  erfc in [1.25,1/0.35]
 */
ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
/*
 * Coefficients for approximation to  erfc in [1/.35,28]
 */
rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */

double
erf(double x) 
{
        int32_t hx,ix,i;
        double R,S,P,Q,s,y,z,r;
        GET_HIGH_WORD(hx,x);
        ix = hx&0x7fffffff;
        if(ix>=0x7ff00000) {                /* erf(nan)=nan */
            i = ((u_int32_t)hx>>31)<<1;
            return (double)(1-i)+one/x;        /* erf(+-inf)=+-1 */
        }

        if(ix < 0x3feb0000) {                /* |x|<0.84375 */
            if(ix < 0x3e300000) {         /* |x|<2**-28 */
                if (ix < 0x00800000) 
                    return 0.125*(8.0*x+efx8*x);  /*avoid underflow */
                return x + efx*x;
            }
            z = x*x;
            r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
            s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
            y = r/s;
            return x + x*y;
        }
        if(ix < 0x3ff40000) {                /* 0.84375 <= |x| < 1.25 */
            s = fabs(x)-one;
            P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
            Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
            if(hx>=0) return erx + P/Q; else return -erx - P/Q;
        }
        if (ix >= 0x40180000) {                /* inf>|x|>=6 */
            if(hx>=0) return one-tiny; else return tiny-one;
        }
        x = fabs(x);
        s = one/(x*x);
        if(ix< 0x4006DB6E) {        /* |x| < 1/0.35 */
            R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
                                ra5+s*(ra6+s*ra7))))));
            S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
                                sa5+s*(sa6+s*(sa7+s*sa8)))))));
        } else {        /* |x| >= 1/0.35 */
            R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
                                rb5+s*rb6)))));
            S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
                                sb5+s*(sb6+s*sb7))))));
        }
        z  = x;  
        SET_LOW_WORD(z,0);
        r  =  exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S);
        if(hx>=0) return one-r/x; else return  r/x-one;
}

double
erfc(double x) 
{
        int32_t hx,ix;
        double R,S,P,Q,s,y,z,r;
        GET_HIGH_WORD(hx,x);
        ix = hx&0x7fffffff;
        if(ix>=0x7ff00000) {                        /* erfc(nan)=nan */
                                                /* erfc(+-inf)=0,2 */
            return (double)(((u_int32_t)hx>>31)<<1)+one/x;
        }

        if(ix < 0x3feb0000) {                /* |x|<0.84375 */
            if(ix < 0x3c700000)          /* |x|<2**-56 */
                return one-x;
            z = x*x;
            r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
            s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
            y = r/s;
            if(hx < 0x3fd00000) {          /* x<1/4 */
                return one-(x+x*y);
            } else {
                r = x*y;
                r += (x-half);
                return half - r ;
            }
        }
        if(ix < 0x3ff40000) {                /* 0.84375 <= |x| < 1.25 */
            s = fabs(x)-one;
            P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
            Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
            if(hx>=0) {
                z  = one-erx; return z - P/Q; 
            } else {
                z = erx+P/Q; return one+z;
            }
        }
        if (ix < 0x403c0000) {                /* |x|<28 */
            x = fabs(x);
            s = one/(x*x);
            if(ix< 0x4006DB6D) {        /* |x| < 1/.35 ~ 2.857143*/
                R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
                                ra5+s*(ra6+s*ra7))))));
                S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
                                sa5+s*(sa6+s*(sa7+s*sa8)))))));
            } else {                        /* |x| >= 1/.35 ~ 2.857143 */
                if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
                R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
                                rb5+s*rb6)))));
                S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
                                sb5+s*(sb6+s*sb7))))));
            }
            z  = x;
            SET_LOW_WORD(z,0);
            r  =  exp(-z*z-0.5625)*
                        exp((z-x)*(z+x)+R/S);
            if(hx>0) return r/x; else return two-r/x;
        } else {
            if(hx>0) return tiny*tiny; else return two-tiny;
        }
}

#endif


void StgFEM_StandardConditionFunctions_SolidBodyRotation( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	DiscretisationContext*	context            = (DiscretisationContext*)_context;
	Dictionary*             dictionary         = context->dictionary;
	FeVariable*             feVariable         = NULL;
	FeMesh*			mesh               = NULL;
	double*                 result             = (double*) _result;
	double*                 coord;
	Coord                   centre;
	Coord                   vector;
	double                  omega;
	
	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	mesh       = feVariable->feMesh;

	/* Find Centre of Solid Body Rotation */
	centre[ I_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreX", 0.0 );
	centre[ J_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreY", 0.0 );
	centre[ K_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreZ", 0.0 );
	omega            = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationOmega",   1.0 );

	/* Find coordinate of node */
	coord = Mesh_GetVertex( mesh, node_lI );

	/* Find vector from centre to node */
	StGermain_VectorSubtraction( vector, coord, centre, 2 );

	result[ I_AXIS ] = -omega * vector[ J_AXIS ];
	result[ J_AXIS ] =  omega * vector[ I_AXIS ];
}


void StgFEM_StandardConditionFunctions_PartialRotationX( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	DiscretisationContext*	context            = (DiscretisationContext*)_context;
	Dictionary*             dictionary         = context->dictionary;
	FeVariable*             feVariable         = NULL;
	FeMesh*			mesh               = NULL;
	double*                 result             = (double*) _result;
	double*                 coord;
	Coord                   centre;
	Coord                   vector;
	double                  omega;
	double			size;

	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	mesh       = feVariable->feMesh;

	/* Find Centre of Solid Body Rotation */
	centre[ I_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreX", 0.0 );
	centre[ J_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreY", 0.0 );
	centre[ K_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreZ", 0.0 );
	size             = Dictionary_GetDouble_WithDefault( dictionary, "RadiusCylinder", 0.0 );
	omega            = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationOmega",   1.0 );

	/* Find coordinate of node */
	coord = Mesh_GetVertex( mesh, node_lI );

	/* Find vector from centre to node */
	StGermain_VectorSubtraction( vector, coord, centre, 2 );

	/*if (context->currentTime > 1.33e-6)
	  omega=0.0;*/
	
	if ((vector[ I_AXIS ]*vector[ I_AXIS ]+vector[ J_AXIS ]*vector[ J_AXIS ])<=size*size)
		*result = -omega * vector[ J_AXIS ];
	else
		*result = 0.0;
}

void StgFEM_StandardConditionFunctions_PartialRotationY( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	DiscretisationContext*	context            = (DiscretisationContext*)_context;
	Dictionary*             dictionary         = context->dictionary;
	FeVariable*             feVariable         = NULL;
	FeMesh*			mesh               = NULL;
	double*                 result             = (double*) _result;
	double*                 coord;
	Coord                   centre;
	Coord                   vector;
	double                  omega;
	double			size;

	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	mesh       = feVariable->feMesh;

	/* Find Centre of Solid Body Rotation */
	centre[ I_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreX", 0.0 );
	centre[ J_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreY", 0.0 );
	centre[ K_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreZ", 0.0 );
	size             = Dictionary_GetDouble_WithDefault( dictionary, "RadiusCylinder", 0.0 );
	omega            = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationOmega",   1.0 );

	/* Find coordinate of node */
	coord = Mesh_GetVertex( mesh, node_lI );

	/* Find vector from centre to node */
	StGermain_VectorSubtraction( vector, coord, centre, 2 );
	
	if ((vector[ I_AXIS ]*vector[ I_AXIS ]+vector[ J_AXIS ]*vector[ J_AXIS ])<=size*size)
		*result =  omega * vector[ I_AXIS ];
	else 
		*result = 0.0;
}


void StgFEM_StandardConditionFunctions_TaperedRotationX( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	DiscretisationContext*	context            = (DiscretisationContext*)_context;
	Dictionary*             dictionary         = context->dictionary;
	FeVariable*             feVariable         = NULL;
	FeMesh*			mesh               = NULL;
	double*                 result             = (double*) _result;
	double*                 coord;
	Coord                   centre;
	Coord                   vector;
	double                  omega;
	double			size, r, taper;

	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	mesh       = feVariable->feMesh;

	/* Find Centre of Solid Body Rotation */
	centre[ I_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreX", 0.0 );
	centre[ J_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreY", 0.0 );
	centre[ K_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreZ", 0.0 );
	size             = Dictionary_GetDouble_WithDefault( dictionary, "RadiusCylinder", 0.0 );
	omega            = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationOmega",   1.0 );

	taper            = Dictionary_GetDouble_WithDefault( dictionary, "TaperedRadius",   0.0 );

	/* Find coordinate of node */
	coord = Mesh_GetVertex( mesh, node_lI );

	/* Find vector from centre to node */
	StGermain_VectorSubtraction( vector, coord, centre, 2 );

        r=sqrt(vector[ I_AXIS ]*vector[ I_AXIS ]
               +vector[ J_AXIS ]*vector[ J_AXIS ]);
	if (r<=size)
          *result = -omega * vector[ J_AXIS ];
	else if(r<=taper)
          *result = -omega * vector[ J_AXIS ]*(taper-r)/(taper-size);
        else
          *result = 0;
}

void StgFEM_StandardConditionFunctions_TaperedRotationY( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	DiscretisationContext*	context            = (DiscretisationContext*)_context;
	Dictionary*             dictionary         = context->dictionary;
	FeVariable*             feVariable         = NULL;
	FeMesh*			mesh               = NULL;
	double*                 result             = (double*) _result;
	double*                 coord;
	Coord                   centre;
	Coord                   vector;
	double                  omega;
	double			size, r, taper;

	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	mesh       = feVariable->feMesh;

	/* Find Centre of Solid Body Rotation */
	centre[ I_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreX", 0.0 );
	centre[ J_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreY", 0.0 );
	centre[ K_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreZ", 0.0 );
	size             = Dictionary_GetDouble_WithDefault( dictionary, "RadiusCylinder", 0.0 );
	omega            = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationOmega",   1.0 );

	taper            = Dictionary_GetDouble_WithDefault( dictionary, "TaperedRadius",   0.0 );

	/* Find coordinate of node */
	coord = Mesh_GetVertex( mesh, node_lI );

	/* Find vector from centre to node */
	StGermain_VectorSubtraction( vector, coord, centre, 2 );


        r=sqrt(vector[ I_AXIS ]*vector[ I_AXIS ]
               +vector[ J_AXIS ]*vector[ J_AXIS ]);
	if (r<=size)
          *result = omega * vector[ I_AXIS ];
	else if(r<=taper)
          *result = omega * vector[ I_AXIS ]*(taper-r)/(taper-size);
        else
          *result = 0;
}




void StgFEM_StandardConditionFunctions_SimpleShear( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	DiscretisationContext*	context            = (DiscretisationContext*)_context;
	Dictionary*             dictionary         = context->dictionary;
	FeVariable*             feVariable         = NULL;
	FeMesh*			mesh               = NULL;
	double*                 result             = (double*) _result;
	double*                 coord;
	double                  centre;
	double                  factor;
	
	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	mesh       = feVariable->feMesh;

	/* Find Centre of Solid Body Rotation */
	centre = Dictionary_GetDouble_WithDefault( dictionary, "SimpleShearCentreY", 0.0 );
	factor = Dictionary_GetDouble_WithDefault( dictionary, "SimpleShearFactor", 1.0 );

	/* Find coordinate of node */
	coord = Mesh_GetVertex( mesh, node_lI );

	*result = factor * (coord[ J_AXIS ] - centre);
}

void StgFEM_StandardConditionFunctions_ShearZ( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	DiscretisationContext*	context            = (DiscretisationContext*)_context;
	Dictionary*             dictionary         = context->dictionary;
	FeVariable*             feVariable         = NULL;
	FeMesh*			mesh               = NULL;
	double*                 result             = (double*) _result;
	double*                 coord;
	double                  centre;
	double                  factor;
	
	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	mesh       = feVariable->feMesh;

	/* Find Centre of Solid Body Rotation */
	centre = Dictionary_GetDouble_WithDefault( dictionary, "ShearZCentre", 0.0 );
	factor = Dictionary_GetDouble_WithDefault( dictionary, "ShearZFactor", 1.0 );

	/* Find coordinate of node */
	coord = Mesh_GetVertex( mesh, node_lI );

	*result = factor * (coord[ K_AXIS ] - centre);
}

void StgFEM_StandardConditionFunctions_Extension( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	DiscretisationContext*	context            = (DiscretisationContext*)_context;
	Dictionary*             dictionary         = context->dictionary;
	FeVariable*             feVariable         = NULL;
	FeMesh*			mesh               = NULL;
	double*                 result             = (double*) _result;
	double*                 coord;
	double                  centre;
	double                  factor;
	
	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	mesh       = feVariable->feMesh;

	/* Find Centre of Solid Body Rotation */
	centre = Dictionary_GetDouble_WithDefault( dictionary, "ExtensionCentreX", 0.0 );
	factor = Dictionary_GetDouble_WithDefault( dictionary, "ExtensionFactor", 1.0 );

	/* Find coordinate of node */
	coord = Mesh_GetVertex( mesh, node_lI );

	*result = factor * (coord[ I_AXIS ] - centre);
}


void StgFEM_StandardConditionFunctions_PartialLid_TopLayer( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* result ) {
	DiscretisationContext*	context = (DiscretisationContext*)_context;
	FeVariable*             velVar = NULL;
	FeMesh*			mesh = NULL;
	double*			velResult = (double*)result;
	double                  margin = 0;
	double			min[3], max[3];
	
	velVar = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	mesh = velVar->feMesh;

	Mesh_GetMinimumSeparation( mesh, &margin, NULL );
	Mesh_GetGlobalCoordRange( mesh, min, max );
	margin *= 1.1;
	if( (Mesh_GetVertex( mesh, node_lI )[I_AXIS] < (max[I_AXIS] - margin )) && 
	    (Mesh_GetVertex( mesh, node_lI )[I_AXIS] > (min[I_AXIS] + margin )))
	{
		(*velResult) = 1;
	}
	else {
		(*velResult) = 0;
	}
}


void StgFEM_StandardConditionFunctions_LinearInterpolationLid( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* result ) {
	DiscretisationContext*	context = (DiscretisationContext*)_context;
	FeVariable*             velVar = NULL;
	FeMesh*			mesh = NULL;
	double*			velResult = (double*)result;
	double			boxLength = 0;
	double			leftHandSideValue = 0;
	double			rightHandSideValue = 0;
	double			gradient = 0;
	double			min[3], max[3];
	
	velVar = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	mesh = velVar->feMesh;

	Mesh_GetGlobalCoordRange( mesh, min, max );
	boxLength = max[I_AXIS] - min[I_AXIS];
	leftHandSideValue = Dictionary_GetDouble_WithDefault( context->dictionary, "bcLeftHandSideValue", 0.0 );
	rightHandSideValue = Dictionary_GetDouble_WithDefault( context->dictionary, "bcRightHandSideValue", 1.0 );
	gradient = (rightHandSideValue - leftHandSideValue) / boxLength;
	(*velResult) = leftHandSideValue + gradient * (Mesh_GetVertex( mesh, node_lI )[I_AXIS] - min[I_AXIS] );
}


void StgFEM_StandardConditionFunctions_Lid_RampWithCentralMax( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* result ) {
	DiscretisationContext*	context = (DiscretisationContext*)_context;
	FeVariable*             velVar = NULL;
	FeMesh*			mesh = NULL;
	double*			velResult = (double*)result;
	double			boxLength = 0;
	double			xPosRelativeToTopLeft = 0;
	double			min[3], max[3];
	
	velVar = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	mesh = velVar->feMesh;

	Mesh_GetGlobalCoordRange( mesh, min, max );
	xPosRelativeToTopLeft = Mesh_GetVertex( mesh, node_lI )[I_AXIS] - min[I_AXIS];
	boxLength = max[I_AXIS] - min[I_AXIS];
	if ( xPosRelativeToTopLeft < boxLength / 2 ) {
		(*velResult) =  2 * xPosRelativeToTopLeft / boxLength;
	}
	else {
		(*velResult) = 1 - 2 * ( xPosRelativeToTopLeft - (boxLength/2) );
	}
}


void StgFEM_StandardConditionFunctions_SinusoidalLid( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* result ) {
	DiscretisationContext*	context = (DiscretisationContext*)_context;
	FeVariable*             velVar = NULL;
	FeMesh*			mesh = NULL;
	double*			velResult = (double*)result;
	double			boxLength = 0;
	double			linearInterp = 0;
	double          	wavenumber;
	double			min[3], max[3];

	wavenumber = Dictionary_GetDouble_WithDefault( context->dictionary, "sinusoidalLidWavenumber", 1 );
	
	velVar = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	mesh = velVar->feMesh;

	Mesh_GetGlobalCoordRange( mesh, min, max );
	boxLength = max[I_AXIS] - min[I_AXIS];
	linearInterp = (Mesh_GetVertex( mesh, node_lI )[I_AXIS] - min[I_AXIS] ) / boxLength;
	(*velResult) = sin( linearInterp * M_PI * wavenumber );
}


void StgFEM_StandardConditionFunctions_CornerOnly( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* result ) {
	DiscretisationContext*	context = (DiscretisationContext*)_context;
	FeVariable*             velVar = NULL;
	FeMesh*			feMesh = NULL;
	double*			velResult = (double*)result;
	Node_GlobalIndex	node_gI = 0;
	unsigned		inds[3];
	Grid*			elGrid;

	velVar = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	feMesh = velVar->feMesh;
	elGrid = *(Grid**)ExtensionManager_Get( feMesh->info, feMesh, 
						ExtensionManager_GetHandle( feMesh->info, "elementGrid" ) );

	node_gI = Mesh_DomainToGlobal( feMesh, MT_VERTEX, node_lI );
	RegularMeshUtils_Node_1DTo3D( feMesh, node_gI, inds );
	
	if ( inds[0] == elGrid->sizes[I_AXIS] ) {
		(*velResult) = 1;
	}
	else {
		(*velResult) = 0;
	}
}

double StGermain_CosineHillValue( double* centre, double* position, double height, double diameterAtBase, Dimension_Index dim ) {
	double distanceFromCentre = StGermain_DistanceBetweenPoints( centre, position, dim );
	
	if (distanceFromCentre < diameterAtBase * 0.5 ) 
		return height * (0.5 + 0.5 * cos( 2.0 * M_PI/diameterAtBase * distanceFromCentre ) );
	else
		return 0.0;
}

void StgFEM_StandardConditionFunctions_TemperatureCosineHill( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	DiscretisationContext*	context            = (DiscretisationContext*)_context;
	Dictionary*             dictionary         = context->dictionary;
	FeVariable*             feVariable         = NULL;
	FeMesh*			feMesh               = NULL;
	double*                 result             = (double*) _result;
	Coord                   centre;
	Coord                   rotationCentre;
	double                  omega;
	double                  hillHeight;
	double                  hillDiameter;
	
	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "TemperatureField" );
	feMesh       = feVariable->feMesh;

	/* Read values from dictionary */
	hillHeight       = Dictionary_GetDouble_WithDefault( dictionary, "CosineHillHeight"  , 1.0 );
	hillDiameter     = Dictionary_GetDouble_WithDefault( dictionary, "CosineHillDiameter", 1.0 );
	centre[ I_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "CosineHillCentreX" , 0.0 );
	centre[ J_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "CosineHillCentreY" , 0.0 );
	centre[ K_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "CosineHillCentreZ" , 0.0 );

	if ( Dictionary_GetBool( dictionary, "RotateCosineHill" ) ) {
		/* Assume solid body rotation */
		rotationCentre[ I_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreX", 0.0 );
		rotationCentre[ J_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreY", 0.0 );
		rotationCentre[ K_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreZ", 0.0 );
		omega                    = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationOmega",   1.0 );

		StGermain_VectorSubtraction( centre, rotationCentre, centre, context->dim );
		StGermain_RotateCoordinateAxis( centre, centre, K_AXIS, omega * context->currentTime );
		StGermain_VectorAddition( centre, centre, rotationCentre, context->dim );
	}

	*result = StGermain_CosineHillValue( centre, Mesh_GetVertex( feMesh, node_lI ), hillHeight, hillDiameter, context->dim );
}


void StgFEM_StandardConditionFunctions_LinearWithSinusoidalPerturbation( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	DiscretisationContext*	context = (DiscretisationContext*)_context;
	Dictionary*             dictionary         = context->dictionary;
	FeVariable*             feVariable = NULL;
	FeMesh*			feMesh = NULL;
	unsigned		nDims;
	double*                 result = (double*) _result;
	double                  topLayerBC;
	double                  bottomLayerBC;
	double                  perturbationAmplitude;
	double                  horizontalWaveNumber;
	double                  verticalWaveNumber;
	double                  scaleFactor;
	double*                 coord;
	Dimension_Index         dim_I=0;
	Coord                   relScaledCoord;
	double			min[3], max[3];
	
	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "TemperatureField" );
	feMesh       = feVariable->feMesh;

	nDims = Mesh_GetDimSize( feMesh );
	Mesh_GetGlobalCoordRange( feMesh, min, max );

	topLayerBC = Dictionary_GetDouble_WithDefault( dictionary, "SinusoidalTempIC_TopLayerBC", 0.0 );
	bottomLayerBC = Dictionary_GetDouble_WithDefault( dictionary, "SinusoidalTempIC_BottomLayerBC", 1.0 );
	scaleFactor = bottomLayerBC - topLayerBC;
	perturbationAmplitude = Dictionary_GetDouble_WithDefault( dictionary, "SinusoidalTempIC_PerturbationAmplitude", 0.1 );
	/* Note: these are both multiplied by pi, so wavenumber = 1 means the perturbation goes from 0 to pi, which is
	 * half a full sin or cos cycle. Wavenumber = 3 means the range is 0 -> 3pi, or 1 and a half full cycles. */
	horizontalWaveNumber = Dictionary_GetDouble_WithDefault( dictionary, "SinusoidalTempIC_HorizontalWaveNumber", 1.0 );
	verticalWaveNumber = Dictionary_GetDouble_WithDefault( dictionary, "SinusoidalTempIC_VerticalWaveNumber", 1.0 );

	coord = Mesh_GetVertex( feMesh, node_lI );
	/* make coord relative to box bottom left corner, then scale from 0 to 1 between box min & max */
	for( dim_I = 0; dim_I < nDims; dim_I++ ) {
		relScaledCoord[dim_I] = (coord[dim_I] - min[dim_I]) / (max[dim_I] - min[dim_I]);
	}

	/* Note: ok to use the 1.0 below since we've already scaled the coord to somewhere between 0 to 1 */
	*result = topLayerBC + scaleFactor * ( 1.0 - relScaledCoord[ J_AXIS ] )
		+ perturbationAmplitude * ( cos( horizontalWaveNumber * M_PI * coord[ I_AXIS ] )
					    * sin( verticalWaveNumber * M_PI * coord[ J_AXIS ] ) );
}

void StgFEM_StandardConditionFunctions_Trigonometry( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	DiscretisationContext*	context            = (DiscretisationContext*)_context;
	FeVariable*             feVariable         = NULL;
	FeMesh*			feMesh               = NULL;
	double*                 result             = (double*) _result;
	double*                 coord;
	double                  height, width;
	double			min[3], max[3];

	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "TemperatureField" );
	feMesh       = feVariable->feMesh;

	Mesh_GetGlobalCoordRange( feMesh, min, max );
	coord = Mesh_GetVertex( feMesh, node_lI );

	/* Get Aspect Ratio */
	height = max[ J_AXIS ] - min[ J_AXIS ];
	width  = max[ I_AXIS ] - min[ I_AXIS ];
	
	*result = 1.0 - 0.5 * M_PI * coord[ J_AXIS ] * sin( M_PI * coord[ I_AXIS ]/width );
}

#define SMALL 1.0e-5
void Stg_FEM_VelicTemperatureIC( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	DiscretisationContext*  context            = (DiscretisationContext*)_context;
	FeVariable*             temperatureField   = (FeVariable*) FieldVariable_Register_GetByName( context->fieldVariable_Register, "TemperatureField" );
	FeMesh*			feMesh               = temperatureField->feMesh;
	Dictionary*             dictionary         = context->dictionary;
	double*                 result             = (double*) _result;
	double*                 coord;
	double                  x; 
	double                  y;
	double                  kx;
	double                  ky;
	int                     wavenumberX;
	double                  wavenumberY;
	double                  sigma;
	double                  Lx;
	double			min[3], max[3];
	
	/* Find coordinate of node */
	coord = Mesh_GetVertex( feMesh, node_lI );
	Mesh_GetGlobalCoordRange( feMesh, min, max );

	/* Make sure that the box has right dimensions */
	assert( ( max[ J_AXIS ] - min[ J_AXIS ] - 1.0 ) < SMALL );
	Lx = max[ I_AXIS ] - min[ I_AXIS ];

	x = coord[ I_AXIS ] - min[ I_AXIS ];
	y = coord[ J_AXIS ] - min[ J_AXIS ];

	wavenumberX = Dictionary_GetInt_WithDefault( dictionary, "wavenumberX", 1 );
	wavenumberY = Dictionary_GetDouble_WithDefault( dictionary, "wavenumberY", 1.0 );
	sigma = Dictionary_GetDouble_WithDefault( dictionary, "sigma", 1.0 );
	
	assert( sigma > 0.0 );
	assert( wavenumberY > 0.0 );
	assert( wavenumberX > 0.0 );
	
	kx = (double)wavenumberX * M_PI / Lx;
	ky = (double)wavenumberY * M_PI;

	*result = sigma * sin( ky * y ) * cos( kx * x );
}

/* IC from Mirko Velic. This is the IC temperature for his solB, from his Analytic Suite. Added 22-May-2006 */
void Stg_FEM_VelicTemperatureIC_SolB( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	DiscretisationContext*  context            = (DiscretisationContext*)_context;
	FeVariable*             temperatureField   = (FeVariable*) FieldVariable_Register_GetByName( context->fieldVariable_Register, "TemperatureField" );
	FeMesh*			feMesh               = temperatureField->feMesh;
	Dictionary*             dictionary         = context->dictionary;
	double*                 result             = (double*) _result;
	double*                 coord;
	double                  x; 
	double                  y;
	double                  km; /*  for y-direction */
	double                  kn; /*  for x-direction */
	double                  wavenumberX;
	double                  wavenumberY;
	double                  L;
	double                  sigma;
	double			min[3], max[3];
	
	/* Find coordinate of node */
	coord = Mesh_GetVertex( feMesh, node_lI );
	Mesh_GetGlobalCoordRange( feMesh, min, max );

	/* Make sure that the box has right dimensions */
	assert( (max[ J_AXIS ] - min[ J_AXIS ] - 1.0 ) < SMALL );
	L = max[ I_AXIS ] - min[ I_AXIS ];

	x = coord[ I_AXIS ] - min[ I_AXIS ];
	y = coord[ J_AXIS ] - min[ J_AXIS ];

	wavenumberX = Dictionary_GetInt_WithDefault( dictionary, "wavenumberX", 1 );
	wavenumberY = Dictionary_GetDouble_WithDefault( dictionary, "wavenumberY", 2.0 );
	assert( wavenumberX != wavenumberY );
	sigma = Dictionary_GetDouble_WithDefault( dictionary, "sigma", 1.0 );

	kn = wavenumberX * M_PI / L;
/* 	 TODO: Re-write Mirko's code and/or Documentation so the input parameters for these ICs are less confusing */
	km = wavenumberY / L;

	*result = sigma * sinh( km * y ) * cos( kn * x );
}


/* Initial Condition derived from Boundary Layer theory -
   taken from P. E. van Keken, S. D. King, U. R. Schmeling, U. R. Christensen, D. Neumeister, and M.-P. Doin. A comparison of methods for the modeling of thermochemical convection. Journal of Geophysical Research, 102(B10):22477-22496, october 1997. */
void StgFEM_StandardConditionFunctions_AnalyticalTemperatureIC( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	DiscretisationContext*	context            = (DiscretisationContext*)_context;
	FeVariable*             feVariable         = NULL;
	FeMesh*			feMesh               = NULL;
	Dictionary*             dictionary         = context->dictionary;
	double*                 result             = (double*) _result;
	double*                 coord;
	double                  u0, v0, Q;
	double                  x, y;
	double                  RaT;
	double                  lambda, height, width;
	double                  Tu, Tl, Tr, Ts;
	double			min[3], max[3];

	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "TemperatureField" );
	feMesh       = feVariable->feMesh;

	coord      = Mesh_GetVertex( feMesh, node_lI );
	Mesh_GetGlobalCoordRange( feMesh, min, max );

	/* Get Aspect Ratio */
	height = max[ J_AXIS ] - min[ J_AXIS ];
	width  = max[ I_AXIS ] - min[ I_AXIS ];
	lambda = width/height;
	
	x = coord[ I_AXIS ] - min[ I_AXIS ];
	y = coord[ J_AXIS ] - min[ J_AXIS ];
	
	/* Get thermal Rayleigh Number from Dictionary */
	RaT = Dictionary_GetDouble( dictionary, "RaT" );
	
	/* Horizontal fluid velocity at upper boundary & lower boundary - Equation A3 */
	u0 = pow( lambda , 7.0/3.0 )/ pow(1 + lambda*lambda*lambda*lambda, 2.0/3.0) * pow(0.5*RaT/sqrt(M_PI) , 2.0/3.0);

	/* Vertical velocity of the upwelling and downwellings - Modified from Van Keken to match Turcotte and Shubert */
	v0 = u0; /*lambda; */
	
	/* Total rate of heat flow out of the top of the cell per unit distance along the axis of the roll - Equation A3 */
	Q = 2.0 * sqrt(M_1_PI * lambda/u0);
	Tu = 0.5 * erf( 0.5 * ( 1 - y ) * sqrt(u0/x) );                                                      /* Equation A2a */
	Tl = 1.0 - 0.5 * erf(0.5 * y * sqrt(u0/(lambda-x)));                                                 /* Equation A2b */
	Tr = 0.5 + 0.5*Q/sqrt(M_PI) * sqrt(v0/(y+1)) * exp( -x*x*v0/(4*y+4) );                               /* Equation A2c */
	Ts = 0.5 - 0.5*Q/sqrt(M_PI) * sqrt(v0/(2-y)) * exp( -(lambda - x) * (lambda - x) * v0 / (8 - 4*y) ); /* Equation A2d */

	/* Equation A1 */
	*result = Tu + Tl + Tr + Ts - 1.5;

	/* Crop result */
	if ( *result > 1.0 ) 
		*result = 1.0;
	else if ( *result < 0.0 ) 
		*result = 0.0;
}

void StgFEM_StandardConditionFunctions_EdgeDriveConvectionIC( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) 
{        
	DiscretisationContext*  context = (DiscretisationContext*)_context;        
	Dictionary*             dictionary         = context->dictionary;        
	FeVariable*             feVariable = NULL;        
	FeMesh*			mesh = NULL;        
	double*                 result = (double*) _result;        
	double                  perturbationAmplitude;        
	double                  thermalAnomalyOffset;        
	double*                 coord;        
	
	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "TemperatureField" );        
	mesh       = feVariable->feMesh;        
	perturbationAmplitude = Dictionary_GetDouble_WithDefault( dictionary, "SinusoidalTempIC_PerturbationAmplitude", 0.1 );        
	thermalAnomalyOffset = Dictionary_GetDouble_WithDefault( dictionary, "thermalAnomalyOffset", 0.0 );        
	coord = Mesh_GetVertex( mesh, node_lI );
	
	/* eqn 1 from S.D.King & D.L. Anderson, "Edge-drive convection", EPSL 160 (1998) 289-296 */        
	
	*result = 1.0 + perturbationAmplitude * sin( M_PI * coord[ J_AXIS ] ) * cos( 0.5 * M_PI * ( coord[ I_AXIS ] + thermalAnomalyOffset ) );
}

void StgFEM_StandardConditionFunctions_SinusoidalExtension( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	FiniteElementContext *	context            = (FiniteElementContext*)_context;
	Dictionary*             dictionary         = context->dictionary;
	double*                 result             = (double*) _result;
	double                  frequency;
	double                  vel0;
	double                  amplitude;
	double                  phaseShift;

	frequency  = Dictionary_GetDouble_WithDefault( dictionary, "SinusoidalExtensionFrequency", 1.0 );
	vel0       = Dictionary_GetDouble_WithDefault( dictionary, "SinusoidalExtensionVelocity", 0.0 );
	amplitude  = Dictionary_GetDouble_WithDefault( dictionary, "SinusoidalExtensionAmplitude", 0.0 );
	phaseShift = Dictionary_GetDouble_WithDefault( dictionary, "SinusoidalExtensionPhaseShift", 0.0 );


	*result = vel0 + amplitude * cos( 2.0 * M_PI * frequency * (context->currentTime + context->dt - phaseShift ) );
}


void StgFEM_StandardConditionFunctions_StepFunction( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	FiniteElementContext *	context            = (FiniteElementContext*)_context;
	FeVariable*             feVariable         = NULL;
	FeMesh*			feMesh               = NULL;
	Dictionary*             dictionary         = context->dictionary;
	double*                 result             = (double*) _result;
        double*                 coord;
	double                  lower_offset, upper_offset;
	double                  value, lower_value, upper_value;
	unsigned		dim;

	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	feMesh       = feVariable->feMesh;
	coord      = Mesh_GetVertex( feMesh, node_lI );

	lower_offset = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionLowerOffset", 0.0 );
	upper_offset = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionUpperOffset", lower_offset );
	value = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionValue", 0.0 );
	dim = Dictionary_GetUnsignedInt_WithDefault( dictionary, "StepFunctionDim", 0 );

        lower_value = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionLowerValue", 0.0 );
        upper_value = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionUpperValue", value );

        if(dim==3)
          {
            dim=0;
            coord=&(context->currentTime);
          }

        if(coord[dim] < lower_offset) {
          *result=lower_value;
        } else if(coord[dim] < upper_offset) {
          *result=lower_value + 
            (upper_value-lower_value)
            *(coord[dim] - lower_offset)/(upper_offset-lower_offset);
        } else {
          *result=upper_value;
        }
}


void StG_FEM_StandardConditionFunctions_StepFunctionProduct1( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	FiniteElementContext *	context            = (FiniteElementContext*)_context;
	FeVariable*             feVariable         = NULL;
	FeMesh*     mesh               = NULL;
	Dictionary*             dictionary         = context->dictionary;
	double*                 result             = (double*) _result;
        double*                 coord;
	double                  start, end;
	double                  value;
	unsigned		dim;

	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	mesh       = feVariable->feMesh;
	coord      = Mesh_GetVertex( mesh, node_lI );

	start = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct1Start", 0.0 );
	end = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct1End", 0.0 );
	value = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct1Value", 0.0 );
	dim = Dictionary_GetUnsignedInt_WithDefault( dictionary, "StepFunctionProduct1Dim", 0 );

        if( coord[dim] > start && coord[dim] < end ) {
          *result = value;
        }
        else {
          *result = 0;
        }
}

void StG_FEM_StandardConditionFunctions_StepFunctionProduct2( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	FiniteElementContext *	context            = (FiniteElementContext*)_context;
	FeVariable*             feVariable         = NULL;
	FeMesh*     mesh               = NULL;
	Dictionary*             dictionary         = context->dictionary;
	double*                 result             = (double*) _result;
        double*                 coord;
	double                  start, end;
	double                  value;
	unsigned		dim;

	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	mesh       = feVariable->feMesh;
	coord      = Mesh_GetVertex( mesh, node_lI );

	start = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct2Start", 0.0 );
	end = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct2End", 0.0 );
	value = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct2Value", 0.0 );
	dim = Dictionary_GetUnsignedInt_WithDefault( dictionary, "StepFunctionProduct2Dim", 0 );

        if( coord[dim] > start && coord[dim] < end ) {
          *result = value;
        }
        else {
          *result = 0;
        }
}


void StG_FEM_StandardConditionFunctions_StepFunctionProduct3( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	FiniteElementContext *	context            = (FiniteElementContext*)_context;
	FeVariable*             feVariable         = NULL;
	FeMesh*     mesh               = NULL;
	Dictionary*             dictionary         = context->dictionary;
	double*                 result             = (double*) _result;
        double*                 coord;
	double                  start, end;
	double                  value;
	unsigned		dim;

	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	mesh       = feVariable->feMesh;
	coord      = Mesh_GetVertex( mesh, node_lI );

	start = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct3Start", 0.0 );
	end = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct3End", 0.0 );
	value = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct3Value", 0.0 );
	dim = Dictionary_GetUnsignedInt_WithDefault( dictionary, "StepFunctionProduct3Dim", 1 );

        if( coord[dim] > start && coord[dim] < end ) {
          *result = value;
        }
        else {
          *result = 0;
        }
}

void StG_FEM_StandardConditionFunctions_StepFunctionProduct4( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	FiniteElementContext *	context            = (FiniteElementContext*)_context;
	FeVariable*             feVariable         = NULL;
	FeMesh*     mesh               = NULL;
	Dictionary*             dictionary         = context->dictionary;
	double*                 result             = (double*) _result;
        double*                 coord;
	double                  start, end;
	double                  value;
	unsigned		dim;

	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	mesh       = feVariable->feMesh;
	coord      = Mesh_GetVertex( mesh, node_lI );

	start = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct4Start", 0.0 );
	end = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct4End", 0.0 );
	value = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct4Value", 0.0 );
	dim = Dictionary_GetUnsignedInt_WithDefault( dictionary, "StepFunctionProduct4Dim", 1 );

        if( coord[dim] > start && coord[dim] < end ) {
          *result = value;
        }
        else {
          *result = 0;
        }
}

/* A Gaussian GaussianHeight*exp(-((GaussianCenter-x)/GaussianWidth)^2) */

void StG_FEM_StandardConditionFunctions_Gaussian
( Node_LocalIndex node_lI, Variable_Index var_I, void* _context,
  void* _result ) {
	FiniteElementContext *	context            = (FiniteElementContext*)_context;
	FeVariable*             feVariable         = NULL;
	FeMesh*     mesh               = NULL;
	Dictionary*             dictionary         = context->dictionary;
	double*                 result             = (double*) _result;
        double*                 coord;
	double                  center, width, height;
	unsigned		dim;

	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	mesh       = feVariable->feMesh;
	coord      = Mesh_GetVertex( mesh, node_lI );

        center = Dictionary_GetDouble_WithDefault( dictionary,
                                                   "GaussianCenter", 0.0 );
	width = Dictionary_GetDouble_WithDefault( dictionary,
                                                  "GaussianWidth", 1.0 );
	height = Dictionary_GetDouble_WithDefault( dictionary,
                                                   "GaussianHeight", 1.0 );
	dim = Dictionary_GetUnsignedInt_WithDefault( dictionary,
                                                     "GaussianDim", 0 );

        *result=height*exp(-(center-coord[dim])*(center-coord[dim])
                           /(width*width));
}

void StgFEM_StandardConditionFunctions_ConvectionBenchmark( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	/* This IC is for the 2D ConvectionBenchmark defined in
	 * http://www.mcc.monash.edu.au/twiki/view/Research/ConvectionBenchmarks
	 */
	
	FiniteElementContext *	context            = (FiniteElementContext*)_context;
	FeVariable*             feVariable         = NULL;
	FeMesh*			mesh;
	double*                 result             = (double*) _result;
	double			min[3], max[3];
        double*                 coord;
	double                  x,y;
	double                  Lx, Ly;

	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "TemperatureField" );
	mesh       = (FeMesh*)feVariable->feMesh;

	Mesh_GetGlobalCoordRange( mesh, min, max );
	
	Lx = max[ I_AXIS ] - min[ I_AXIS ];
	Ly = max[ J_AXIS ] - min[ J_AXIS ];
	
	coord      = Mesh_GetVertex( mesh, node_lI );

	x = ( coord[0] - min[ I_AXIS ] ) / Lx;
	y = ( coord[1] - min[ J_AXIS ] ) / Ly;


	*result = ( 1 - y ) + ( cos( M_PI * x ) * sin( M_PI * y ) ) / 100 ;
}

void StgFEM_StandardConditionFunctions_ConstantVelocity( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	DiscretisationContext*	context            = (DiscretisationContext*)_context;
	Dictionary*             dictionary         = context->dictionary;
	FeVariable*             feVariable         = NULL;
	FeMesh*			mesh               = NULL;
	double*                 result             = (double*) _result;
	double                  velocity[3];
	
	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	mesh       = feVariable->feMesh;

	velocity[ I_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "ConstantVelocity_Vx", 0.0 );
	velocity[ J_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "ConstantVelocity_Vy", 1.0 );
	velocity[ K_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "ConstantVelocity_Vz", 0.0 );

	result[ I_AXIS ] = velocity[ I_AXIS ];
	result[ J_AXIS ] = velocity[ J_AXIS ];
	if( feVariable->dim == 3 )
		result[ K_AXIS ] = velocity[ K_AXIS ];
}


void StgFEM_StandardConditionFunctions_TemperatureProfile( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
  FiniteElementContext *	context            = (FiniteElementContext*)_context;
  FeVariable*             feVariable         = NULL;
  FeMesh*     mesh               = NULL;
  Dictionary*             dictionary         = context->dictionary;
  double*                 result             = (double*) _result;
  double*                 coord;
  double                  T_0, H_0, dH, H, H_m, A, B, C, x_min, x_max, y_max, T_m, xc, dum;
  /* G.Ito 10/08 added variables x_min, x_max, T_m, Xc, to do variation in x
     and limit maximum T */
  
  feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
  mesh       = feVariable->feMesh;
  coord      = Mesh_GetVertex( mesh, node_lI );
  
  T_0 = Dictionary_GetDouble_WithDefault( dictionary, "TemperatureProfileTop", 0.0 );
  T_m = Dictionary_GetDouble_WithDefault( dictionary, "TemperatureProfileMax", 10000.0 );
  H_0 = Dictionary_GetDouble_WithDefault( dictionary, "TemperatureProfileH0", -1.0 );
  H_m = Dictionary_GetDouble_WithDefault( dictionary, "TemperatureProfileHm", 1.0e+8 );
  dH = Dictionary_GetDouble_WithDefault( dictionary, "TemperatureProfiledH", 0.0 );     
  A = Dictionary_GetDouble_WithDefault( dictionary, "TemperatureProfileLinearCoefficient", 0.0 );
  B = Dictionary_GetDouble_WithDefault( dictionary, "TemperatureProfileExponentialCoefficient1", 0.0 );
  C = Dictionary_GetDouble_WithDefault( dictionary, "TemperatureProfileExponentialCoefficient2", 0.0 );
  y_max = Dictionary_GetDouble_WithDefault( dictionary, "maxY", 0.0 );
  x_max = Dictionary_GetDouble_WithDefault( dictionary, "maxX", 0.0 );
  x_min = Dictionary_GetDouble_WithDefault( dictionary, "minX", 0.0 );
  xc = Dictionary_GetDouble_WithDefault( dictionary, "ExtensionCentreX", 0.0 );
  
  if (H_0<0.0)
    {
      if(coord[1]>y_max)
        {
          *result=T_0;
        }
      else
        {
          *result=T_0 + A*(y_max-coord[1]) + B*(1-exp(-C*(y_max-coord[1])));
        }
    }
  else
    {
      if(coord[1]>=y_max)
        {
          *result=T_0;
        }
      else
        {
          H=H_0 + 2*fabs(coord[0]-xc)/(x_max-x_min)*dH;
          if (H>H_m) H=H_m;
          
          dum=T_0 + ((T_m-T_0)/H)*(y_max-coord[1])
            + B*(1-exp(-C*(y_max-coord[1])));
          if (dum>T_m) dum=T_m;
          *result=dum;
        }
    }
}

void StgFEM_StandardConditionFunctions_ERF( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
	FiniteElementContext *	context            = (FiniteElementContext*)_context;
	FeVariable*             feVariable         = NULL;
	FeMesh*			feMesh               = NULL;
	Dictionary*             dictionary         = context->dictionary;
	double*                 result             = (double*) _result;
        double*                 coord;
	double                  width, scale, dilate, offset, constant;
	unsigned		dim;

	feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
	feMesh       = feVariable->feMesh;
	coord      = Mesh_GetVertex( feMesh, node_lI );

	width = Dictionary_GetDouble_WithDefault( dictionary, "ERFWidth", 0.0 );
	offset= Dictionary_GetDouble_WithDefault(dictionary, "ERFOffset",0.0 );
	constant=Dictionary_GetDouble_WithDefault(dictionary,"ERFConstant",0.0);
        scale = Dictionary_GetDouble_WithDefault( dictionary, "ERFScale", 1.0 );
	dilate = Dictionary_GetDouble_WithDefault( dictionary,"ERFDilate",1.0 );
	dim = Dictionary_GetUnsignedInt_WithDefault( dictionary, "ERFDim", 0 );

        if(dim==3)
          {
            dim=0;
            coord=&(context->currentTime);
          }

        if(coord[dim]+offset < -width && width!=0)
          *result=constant-scale;
        else if(coord[dim]+offset > width && width!=0)
          *result=constant+scale;
        else
          *result=constant+scale*erf((coord[dim]+offset)/dilate);
}

void StgFEM_StandardConditionFunctions_ERFC(Node_LocalIndex node_lI,
                                            Variable_Index var_I,
                                            void* _context, void* _result ) {
	FiniteElementContext *	context            = (FiniteElementContext*)_context;
	FeVariable*             feVariable         = NULL;
	FeMesh*			feMesh               = NULL;
	Dictionary*             dictionary         = context->dictionary;
	double*                 result             = (double*) _result;
        double*                 coord;
	double                  width, scale, dilate, offset, constant;
	unsigned		dim;

	feVariable = (FeVariable*)FieldVariable_Register_GetByName
          ( context->fieldVariable_Register, "VelocityField" );
	feMesh       = feVariable->feMesh;
	coord      = Mesh_GetVertex( feMesh, node_lI );

	width = Dictionary_GetDouble_WithDefault(dictionary, "ERFCWidth", 0.0 );
	offset= Dictionary_GetDouble_WithDefault(dictionary, "ERFCOffset",0.0 );
	constant=Dictionary_GetDouble_WithDefault(dictionary,"ERFCConstant",0.0);
        scale = Dictionary_GetDouble_WithDefault(dictionary, "ERFCScale", 1.0 );
	dilate = Dictionary_GetDouble_WithDefault(dictionary,"ERFCDilate",1.0 );
	dim = Dictionary_GetUnsignedInt_WithDefault(dictionary, "ERFCDim", 0 );

        if(dim==3)
          {
            dim=0;
            coord=&(context->currentTime);
          }

        if(coord[dim]+offset < -width && width!=0)
          *result=constant-scale;
        else if(coord[dim]+offset > width && width!=0)
          *result=constant+scale;
        else
          *result=constant+scale*erfc((coord[dim]+offset)/dilate);
}

void StgFEM_StandardConditionFunctions_RubberSheet( Node_LocalIndex node_lI,
                                                    Variable_Index var_I,
                                                    void* _context,
                                                    void* _result )
{
  FiniteElementContext *	context            = (FiniteElementContext*)_context;
  FeVariable*             feVariable         = NULL;
  FeMesh*			feMesh               = NULL;
  Dictionary*             dictionary         = context->dictionary;
  double*                 result             = (double*) _result;
  double*                 coord;
  double                  lower_offset, upper_offset;
  double                  lower_value, upper_value, time;
  unsigned		dim;

  feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
  feMesh       = feVariable->feMesh;
  coord      = Mesh_GetVertex( feMesh, node_lI );

  lower_offset = Dictionary_GetDouble_WithDefault( dictionary,
                                                   "RubberSheetLowerOffset",
                                                   0.0 );
  upper_offset = Dictionary_GetDouble_WithDefault( dictionary,
                                                   "RubberSheetUpperOffset",
                                                   lower_offset );
  dim = Dictionary_GetUnsignedInt_WithDefault( dictionary,
                                               "RubberSheetDim", 0 );

  lower_value = Dictionary_GetDouble_WithDefault( dictionary,
                                                  "RubberSheetLowerValue",
                                                  0.0 );
  upper_value = Dictionary_GetDouble_WithDefault( dictionary,
                                                  "RubberSheetUpperValue",
                                                  0.0 );

  time=context->currentTime;

  if(coord[dim] < lower_offset + lower_value*time)
    {
      *result=lower_value;
    }
  else if(coord[dim] < upper_offset + upper_value*time)
    {
      double min[3], max[3];
      Mesh_GetGlobalCoordRange( feMesh, min, max );
      *result=lower_value + 
        (upper_value-lower_value)
        *(coord[dim] - min[dim])/(max[dim]-min[dim]);
    }
  else
    {
      *result=upper_value;
    }
}



Bool StgFEM_StandardConditionFunctions_Init( int* argc, char** argv[] ) {
  Stg_ComponentRegister* componentsRegister = Stg_ComponentRegister_Get_ComponentRegister();
  Stg_ComponentRegister_Add(componentsRegister,
                            StgFEM_StandardConditionFunctions_Type, "0",
                            _StgFEM_StandardConditionFunctions_DefaultNew );
}

-------------- next part --------------
A non-text attachment was scrubbed...
Name: rubber.swf
Type: application/octet-stream
Size: 778135 bytes
Desc: not available
Url : http://geodynamics.org/pipermail/cig-long/attachments/20091109/f0837abf/attachment-0001.obj 
-------------- next part --------------
A non-text attachment was scrubbed...
Name: rubber.xml
Type: text/xml
Size: 18925 bytes
Desc: not available
Url : http://geodynamics.org/pipermail/cig-long/attachments/20091109/f0837abf/attachment-0001.bin 


More information about the CIG-LONG mailing list