[CIG-LONG] Input File Standard Condition Function
Walter Landry
walter at geodynamics.org
Thu Feb 17 11:52:55 PST 2011
Karen Paczkowski <karen.paczkowski at yale.edu> wrote:
> Hi,
>
> I have been trying to use the input file standard condition function
> to define the values along the far edges of my system, but I am
> encountering a problem that it will only reads in File1.
Sorry about that. There was a bug in the implementation that I have
now fixed. I only had to modify one file
StgFEM/plugins/StandardConditionFunctions/StandardConditionFunctions.c
I am attaching the new version of that file. I have also updated the
repository.
Let me know if you have any more problems.
Cheers,
Walter Landry
walter at geodynamics.org
-------------- next part --------------
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**
** Copyright (C), 2003-2006, Victorian Partnership for Advanced Computing (VPAC) Ltd, 110 Victoria Street,
** Melbourne, 3053, Australia.
**
** Primary Contributing Organisations:
** Victorian Partnership for Advanced Computing Ltd, Computational Software Development - http://csd.vpac.org
** Australian Computational Earth Systems Simulator - http://www.access.edu.au
** Monash Cluster Computing - http://www.mcc.monash.edu.au
** Computational Infrastructure for Geodynamics - http://www.geodynamics.org
**
** Contributors:
** Patrick D. Sunter, Software Engineer, VPAC. (pds at vpac.org)
** Robert Turnbull, Research Assistant, Monash University. (robert.turnbull at sci.monash.edu.au)
** Stevan M. Quenette, Senior Software Engineer, VPAC. (steve at vpac.org)
** David May, PhD Student, Monash University (david.may at sci.monash.edu.au)
** Louis Moresi, Associate Professor, Monash University. (louis.moresi at sci.monash.edu.au)
** Luke J. Hodkinson, Computational Engineer, VPAC. (lhodkins at vpac.org)
** Alan H. Lo, Computational Engineer, VPAC. (alan at vpac.org)
** Raquibul Hassan, Computational Engineer, VPAC. (raq at vpac.org)
** Julian Giordani, Research Assistant, Monash University. (julian.giordani at sci.monash.edu.au)
** Vincent Lemiale, Postdoctoral Fellow, Monash University. (vincent.lemiale at sci.monash.edu.au)
**
** This library is free software; you can redistribute it and/or
** modify it under the terms of the GNU Lesser General Public
** License as published by the Free Software Foundation; either
** version 2.1 of the License, or (at your option) any later version.
**
** This library is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
** Lesser General Public License for more details.
**
** You should have received a copy of the GNU Lesser General Public
** License along with this library; if not, write to the Free Software
** Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
**
** $Id: StandardConditionFunctions.c 1196 2008-08-04 16:29:30Z LukeHodkinson $
**
**~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
#include <string.h>
#include <mpi.h>
#include <StGermain/StGermain.h>
#include <StgDomain/StgDomain.h>
#include <StgFEM/StgFEM.h>
#include <assert.h>
#include "StandardConditionFunctions.h"
const Type StgFEM_StandardConditionFunctions_Type = "StgFEM_StandardConditionFunctions";
void _StgFEM_StandardConditionFunctions_AssignFromXML( void* component, Stg_ComponentFactory* cf, void* data ) {
Codelet* self = (Codelet*)component;
AbstractContext* context;
ConditionFunction* condFunc;
Dictionary* pluginDict = Codelet_GetPluginDictionary( component, cf->rootDict );
context = (AbstractContext*)Stg_ComponentFactory_ConstructByName( cf, Dictionary_GetString( pluginDict, (Dictionary_Entry_Key)"Context" ), AbstractContext, True, data );
self->context = context;
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_SolidBodyRotation, (Name)"Velocity_SolidBodyRotation" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_PartialRotationX, (Name)"Velocity_PartialRotationX" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_PartialRotationY, (Name)"Velocity_PartialRotationY" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_TaperedRotationX, (Name)"TaperedRotationX" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_TaperedRotationY, (Name)"TaperedRotationY" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_SimpleShear, (Name)"Velocity_SimpleShear" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_SimpleShearInverted, (Name)"Velocity_SimpleShearInverted" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_ShearZ, (Name)"ShearZ" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_Extension, (Name)"Velocity_Extension" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_PartialLid_TopLayer, (Name)"Velocity_PartialLid_TopLayer" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_Trigonometry, (Name)"Temperature_Trigonometry" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_LinearInterpolationLid, (Name)"Velocity_LinearInterpolationLid" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_Lid_RampWithCentralMax, (Name)"Velocity_Lid_RampWithCentralMax" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_LinearVelocityLeftWall, (Name)"LinearVelocityLeftWall" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_LinearVelocityRightWall, (Name)"LinearVelocityRightWall" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_SinusoidalLid, (Name)"Velocity_SinusoidalLid" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_CornerOnly, (Name)"Velocity_Lid_CornerOnly" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_TemperatureCosineHill, (Name)"Temperature_CosineHill" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_ConvectionBenchmark, (Name)"Temperature_ConvectionBenchmark" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_LinearWithSinusoidalPerturbation, (Name)"LinearWithSinusoidalPerturbation" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_EdgeDriveConvectionIC, (Name)"EdgeDriveConvectionIC" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_ThermalEdgeDriveConvectionIC, (Name)"ThermalEdgeDriveConvectionIC" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_AnalyticalTemperatureIC, (Name)"AnalyticalTemperatureIC" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( Stg_FEM_VelicTemperatureIC, (Name)"VelicTemperatureIC" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( Stg_FEM_VelicTemperatureIC_SolB, (Name)"VelicTemperatureIC_SolB" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_SinusoidalExtension, (Name)"SinusoidalExtension" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_StepFunction, (Name)"StepFunction" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StG_FEM_StandardConditionFunctions_StepFunctionProduct1, (Name)"StepFunctionProduct1");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StG_FEM_StandardConditionFunctions_StepFunctionProduct2, (Name)"StepFunctionProduct2");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StG_FEM_StandardConditionFunctions_StepFunctionProduct3, (Name)"StepFunctionProduct3");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StG_FEM_StandardConditionFunctions_StepFunctionProduct4, (Name)"StepFunctionProduct4");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_TemperatureProfile, (Name)"TemperatureProfile");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StG_FEM_StandardConditionFunctions_Gaussian, (Name)"Gaussian");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_ERF,
(Name)"ERF");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_ERFC,
(Name)"ERFC");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_RubberSheet,
(Name)"RubberSheet");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_MovingStepFunction, (Name)"MovingStepFunction");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_SpecRidge3D, (Name)"SpecRidge3D" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_SpectralBCX, (Name)"SpectralBCX" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_SpectralBCY, (Name)"SpectralBCY" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_SpectralBCZ, (Name)"SpectralBCZ" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_SpectralPressureBCX, (Name)"SpectralPressureBCX" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_SpectralPressureBCY, (Name)"SpectralPressureBCY" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_ErrorFunc, (Name)"ErrorFunc" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_ConstantVector, (Name)"ConstantVector" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_GaussianDistribution, (Name)"GaussianDistribution" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_1DGaussianDistribution, (Name)"1DGaussianDistribution" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_HalfContainer, (Name)"HalfContainer" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_ConstantValue, (Name)"ConstantValue" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_DiagonalLine, (Name)"DiagonalLine" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_DeltaFunction, (Name)"DeltaFunction" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_InflowBottom, (Name)"InflowBottom" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_GaussianTube, (Name)"GaussianTube" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New( StgFEM_StandardConditionFunctions_GravitationalPotential, (Name)"GravitationalPotential" );
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_WarsTemperature,
(Name)"WarsTemperature");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_Quadratic,
(Name)"Quadratic");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_File1,
(Name)"File1");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_File2,
(Name)"File2");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_File3,
(Name)"File3");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_File4,
(Name)"File4");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_File5,
(Name)"File5");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_File6,
(Name)"File6");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_File7,
(Name)"File7");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_File8,
(Name)"File8");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_File9,
(Name)"File9");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_File10,
(Name)"File10");
ConditionFunction_Register_Add( condFunc_Register, condFunc );
}
void _StgFEM_StandardConditionFunctions_Destroy( void* _self, void* data ) {
/* This function will totally clean the condFunc_Register
*
* This could be trouble some if other code adds or deletes condition functions on this register
*/
unsigned *refCount = &(condFunc_Register->count);
/* first check if there are things still on the condFunc_Register, if so .... */
if( *refCount != 0 ) {
while( *refCount != 0 ) {
_ConditionFunction_Delete( condFunc_Register->_cf[ *refCount-1 ] );
condFunc_Register->_cf[ *refCount-1 ] = NULL;
*refCount = *refCount - 1;
}
}
_Codelet_Destroy( _self, data );
}
void* _StgFEM_StandardConditionFunctions_DefaultNew( Name name ) {
return Codelet_New(
StgFEM_StandardConditionFunctions_Type,
_StgFEM_StandardConditionFunctions_DefaultNew,
_StgFEM_StandardConditionFunctions_AssignFromXML,
_Codelet_Build,
_Codelet_Initialise,
_Codelet_Execute,
_StgFEM_StandardConditionFunctions_Destroy,
name );
}
Index StgFEM_StandardConditionFunctions_Register( PluginsManager* pluginsManager ) {
Journal_DPrintf( StgFEM_Debug, "In: %s( void* )\n", __func__ );
return PluginsManager_Submit( pluginsManager, StgFEM_StandardConditionFunctions_Type, (Name)"0", _StgFEM_StandardConditionFunctions_DefaultNew );
}
Bool StgFEM_StandardConditionFunctions_Init( int* argc, char** argv[] ) {
Stg_ComponentRegister* componentsRegister = Stg_ComponentRegister_Get_ComponentRegister();
Stg_ComponentRegister_Add(componentsRegister,
StgFEM_StandardConditionFunctions_Type, (Name)"0",
_StgFEM_StandardConditionFunctions_DefaultNew );
RegisterParent( StgFEM_StandardConditionFunctions_Type, Stg_Component_Type );
return True;
}
#ifdef NO_ERF
/* Copied from the OpenBSD iplementation of erf.c
(src/lib/libm/src/erf.c and src/lib/libm/src/math_private.h).
Modified to only work on 32 bit little endian machines.
This is just a hack for Windows machines. */
/* @(#)s_erf.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* double erf(double x)
* double erfc(double x)
* x
* 2 |\
* erf(x) = --------- | exp(-t*t)dt
* sqrt(pi) \|
* 0
*
* erfc(x) = 1-erf(x)
* Note that
* erf(-x) = -erf(x)
* erfc(-x) = 2 - erfc(x)
*
* Method:
* 1. For |x| in [0, 0.84375]
* erf(x) = x + x*R(x^2)
* erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
* = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
* where R = P/Q where P is an odd poly of degree 8 and
* Q is an odd poly of degree 10.
* -57.90
* | R - (erf(x)-x)/x | <= 2
*
*
* Remark. The formula is derived by noting
* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
* and that
* 2/sqrt(pi) = 1.128379167095512573896158903121545171688
* is close to one. The interval is chosen because the fix
* point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
* near 0.6174), and by some experiment, 0.84375 is chosen to
* guarantee the error is less than one ulp for erf.
*
* 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
* c = 0.84506291151 rounded to single (24 bits)
* erf(x) = sign(x) * (c + P1(s)/Q1(s))
* erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
* 1+(c+P1(s)/Q1(s)) if x < 0
* |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
* Remark: here we use the taylor series expansion at x=1.
* erf(1+s) = erf(1) + s*Poly(s)
* = 0.845.. + P1(s)/Q1(s)
* That is, we use rational approximation to approximate
* erf(1+s) - (c = (single)0.84506291151)
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
* where
* P1(s) = degree 6 poly in s
* Q1(s) = degree 6 poly in s
*
* 3. For x in [1.25,1/0.35(~2.857143)],
* erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
* erf(x) = 1 - erfc(x)
* where
* R1(z) = degree 7 poly in z, (z=1/x^2)
* S1(z) = degree 8 poly in z
*
* 4. For x in [1/0.35,28]
* erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
* = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
* = 2.0 - tiny (if x <= -6)
* erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
* erf(x) = sign(x)*(1.0 - tiny)
* where
* R2(z) = degree 6 poly in z, (z=1/x^2)
* S2(z) = degree 7 poly in z
*
* Note1:
* To compute exp(-x*x-0.5625+R/S), let s be a single
* precision number and s := x; then
* -x*x = -s*s + (s-x)*(s+x)
* exp(-x*x-0.5626+R/S) =
* exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
* Note2:
* Here 4 and 5 make use of the asymptotic series
* exp(-x*x)
* erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
* x*sqrt(pi)
* We use rational approximation to approximate
* g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
* Here is the error bound for R1/S1 and R2/S2
* |R1/S1 - f(x)| < 2**(-62.57)
* |R2/S2 - f(x)| < 2**(-61.52)
*
* 5. For inf > x >= 28
* erf(x) = sign(x) *(1 - tiny) (raise inexact)
* erfc(x) = tiny*tiny (raise underflow) if x > 0
* = 2 - tiny if x<0
*
* 7. Special case:
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
* erfc/erf(NaN) is NaN
*/
/* Assume little endian, 32 bit machines */
typedef int int32_t;
typedef unsigned int u_int32_t;
typedef union
{
double value;
struct
{
u_int32_t lsw;
u_int32_t msw;
} parts;
} ieee_double_shape_type;
/* Get the more significant 32 bit int from a double. */
#define GET_HIGH_WORD(i,d) \
do { \
ieee_double_shape_type gh_u; \
gh_u.value = (d); \
(i) = gh_u.parts.msw; \
} while (0)
/* Set the less significant 32 bits of a double from an int. */
#define SET_LOW_WORD(d,v) \
do { \
ieee_double_shape_type sl_u; \
sl_u.value = (d); \
sl_u.parts.lsw = (v); \
(d) = sl_u.value; \
} while (0)
static const double
tiny = 1e-300,
half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
/* c = (float)0.84506291151 */
erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
/*
* Coefficients for approximation to erf on [0,0.84375]
*/
efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
/*
* Coefficients for approximation to erf in [0.84375,1.25]
*/
pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
/*
* Coefficients for approximation to erfc in [1.25,1/0.35]
*/
ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
/*
* Coefficients for approximation to erfc in [1/.35,28]
*/
rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
double
erf(double x)
{
int32_t hx,ix,i;
double R,S,P,Q,s,y,z,r;
GET_HIGH_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix>=0x7ff00000) { /* erf(nan)=nan */
i = ((u_int32_t)hx>>31)<<1;
return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
}
if(ix < 0x3feb0000) { /* |x|<0.84375 */
if(ix < 0x3e300000) { /* |x|<2**-28 */
if (ix < 0x00800000)
return 0.125*(8.0*x+efx8*x); /*avoid underflow */
return x + efx*x;
}
z = x*x;
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
y = r/s;
return x + x*y;
}
if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
s = fabs(x)-one;
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
if(hx>=0) return erx + P/Q; else return -erx - P/Q;
}
if (ix >= 0x40180000) { /* inf>|x|>=6 */
if(hx>=0) return one-tiny; else return tiny-one;
}
x = fabs(x);
s = one/(x*x);
if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
ra5+s*(ra6+s*ra7))))));
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
sa5+s*(sa6+s*(sa7+s*sa8)))))));
} else { /* |x| >= 1/0.35 */
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
rb5+s*rb6)))));
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
sb5+s*(sb6+s*sb7))))));
}
z = x;
SET_LOW_WORD(z,0);
r = exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S);
if(hx>=0) return one-r/x; else return r/x-one;
}
double
erfc(double x)
{
int32_t hx,ix;
double R,S,P,Q,s,y,z,r;
GET_HIGH_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix>=0x7ff00000) { /* erfc(nan)=nan */
/* erfc(+-inf)=0,2 */
return (double)(((u_int32_t)hx>>31)<<1)+one/x;
}
if(ix < 0x3feb0000) { /* |x|<0.84375 */
if(ix < 0x3c700000) /* |x|<2**-56 */
return one-x;
z = x*x;
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
y = r/s;
if(hx < 0x3fd00000) { /* x<1/4 */
return one-(x+x*y);
} else {
r = x*y;
r += (x-half);
return half - r ;
}
}
if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
s = fabs(x)-one;
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
if(hx>=0) {
z = one-erx; return z - P/Q;
} else {
z = erx+P/Q; return one+z;
}
}
if (ix < 0x403c0000) { /* |x|<28 */
x = fabs(x);
s = one/(x*x);
if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
ra5+s*(ra6+s*ra7))))));
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
sa5+s*(sa6+s*(sa7+s*sa8)))))));
} else { /* |x| >= 1/.35 ~ 2.857143 */
if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
rb5+s*rb6)))));
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
sb5+s*(sb6+s*sb7))))));
}
z = x;
SET_LOW_WORD(z,0);
r = exp(-z*z-0.5625)*
exp((z-x)*(z+x)+R/S);
if(hx>0) return r/x; else return two-r/x;
} else {
if(hx>0) return tiny*tiny; else return two-tiny;
}
}
#endif
void StgFEM_StandardConditionFunctions_SolidBodyRotation( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
DomainContext* context = (DomainContext*)_context;
Dictionary* dictionary = context->dictionary;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
double* result = (double*) _result;
double* coord;
Coord centre;
Coord vector;
double omega;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = feVariable->feMesh;
/* Find Centre of Solid Body Rotation */
centre[ I_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SolidBodyRotationCentreX", 0.0 );
centre[ J_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SolidBodyRotationCentreY", 0.0 );
centre[ K_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SolidBodyRotationCentreZ", 0.0 );
omega = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SolidBodyRotationOmega", 1.0 );
/* Find coordinate of node */
coord = Mesh_GetVertex( mesh, node_lI );
/* Find vector from centre to node */
StGermain_VectorSubtraction( vector, coord, centre, 2 );
result[ I_AXIS ] = -omega * vector[ J_AXIS ];
result[ J_AXIS ] = omega * vector[ I_AXIS ];
}
void StgFEM_StandardConditionFunctions_PartialRotationX( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
DomainContext* context = (DomainContext*)_context;
Dictionary* dictionary = context->dictionary;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
double* result = (double*) _result;
double* coord;
Coord centre;
Coord vector;
double omega;
double size;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = feVariable->feMesh;
/* Find Centre of Solid Body Rotation */
centre[ I_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SolidBodyRotationCentreX", 0.0 );
centre[ J_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SolidBodyRotationCentreY", 0.0 );
centre[ K_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SolidBodyRotationCentreZ", 0.0 );
size = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"RadiusCylinder", 0.0 );
omega = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SolidBodyRotationOmega", 1.0 );
/* Find coordinate of node */
coord = Mesh_GetVertex( mesh, node_lI );
/* Find vector from centre to node */
StGermain_VectorSubtraction( vector, coord, centre, 2 );
/*if (context->currentTime > 1.33e-6)
omega=0.0;*/
if ((vector[ I_AXIS ]*vector[ I_AXIS ]+vector[ J_AXIS ]*vector[ J_AXIS ])<=size*size)
*result = -omega * vector[ J_AXIS ];
else
*result = 0.0;
}
void StgFEM_StandardConditionFunctions_PartialRotationY( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
DomainContext* context = (DomainContext*)_context;
Dictionary* dictionary = context->dictionary;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
double* result = (double*) _result;
double* coord;
Coord centre;
Coord vector;
double omega;
double size;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = feVariable->feMesh;
/* Find Centre of Solid Body Rotation */
centre[ I_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SolidBodyRotationCentreX", 0.0 );
centre[ J_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SolidBodyRotationCentreY", 0.0 );
centre[ K_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SolidBodyRotationCentreZ", 0.0 );
size = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"RadiusCylinder", 0.0 );
omega = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SolidBodyRotationOmega", 1.0 );
/* Find coordinate of node */
coord = Mesh_GetVertex( mesh, node_lI );
/* Find vector from centre to node */
StGermain_VectorSubtraction( vector, coord, centre, 2 );
if ((vector[ I_AXIS ]*vector[ I_AXIS ]+vector[ J_AXIS ]*vector[ J_AXIS ])<=size*size)
*result = omega * vector[ I_AXIS ];
else
*result = 0.0;
}
void StgFEM_StandardConditionFunctions_TaperedRotationX( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
DomainContext* context = (DomainContext*)_context;
Dictionary* dictionary = context->dictionary;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
double* result = (double*) _result;
double* coord;
Coord centre;
Coord vector;
double omega;
double size, r, taper;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = feVariable->feMesh;
/* Find Centre of Solid Body Rotation */
centre[ I_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreX", 0.0 );
centre[ J_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreY", 0.0 );
centre[ K_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreZ", 0.0 );
size = Dictionary_GetDouble_WithDefault( dictionary, "RadiusCylinder", 0.0 );
omega = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationOmega", 1.0 );
taper = Dictionary_GetDouble_WithDefault( dictionary, "TaperedRadius", 0.0 );
/* Find coordinate of node */
coord = Mesh_GetVertex( mesh, node_lI );
/* Find vector from centre to node */
StGermain_VectorSubtraction( vector, coord, centre, 2 );
r=sqrt(vector[ I_AXIS ]*vector[ I_AXIS ]
+vector[ J_AXIS ]*vector[ J_AXIS ]);
if (r<=size)
*result = -omega * vector[ J_AXIS ];
else if(r<=taper)
*result = -omega * vector[ J_AXIS ]*(taper-r)/(taper-size);
else
*result = 0;
}
void StgFEM_StandardConditionFunctions_TaperedRotationY( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
DomainContext* context = (DomainContext*)_context;
Dictionary* dictionary = context->dictionary;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
double* result = (double*) _result;
double* coord;
Coord centre;
Coord vector;
double omega;
double size, r, taper;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = feVariable->feMesh;
/* Find Centre of Solid Body Rotation */
centre[ I_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreX", 0.0 );
centre[ J_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreY", 0.0 );
centre[ K_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationCentreZ", 0.0 );
size = Dictionary_GetDouble_WithDefault( dictionary, "RadiusCylinder", 0.0 );
omega = Dictionary_GetDouble_WithDefault( dictionary, "SolidBodyRotationOmega", 1.0 );
taper = Dictionary_GetDouble_WithDefault( dictionary, "TaperedRadius", 0.0 );
/* Find coordinate of node */
coord = Mesh_GetVertex( mesh, node_lI );
/* Find vector from centre to node */
StGermain_VectorSubtraction( vector, coord, centre, 2 );
r=sqrt(vector[ I_AXIS ]*vector[ I_AXIS ]
+vector[ J_AXIS ]*vector[ J_AXIS ]);
if (r<=size)
*result = omega * vector[ I_AXIS ];
else if(r<=taper)
*result = omega * vector[ I_AXIS ]*(taper-r)/(taper-size);
else
*result = 0;
}
void StgFEM_StandardConditionFunctions_SimpleShear( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
DomainContext* context = (DomainContext*)_context;
Dictionary* dictionary = context->dictionary;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
double* result = (double*) _result;
double* coord;
double centre;
double factor;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = feVariable->feMesh;
/* Find Centre of Solid Body Rotation */
centre = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SimpleShearCentreY", 0.0 );
factor = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SimpleShearFactor", 1.0 );
/* Find coordinate of node */
coord = Mesh_GetVertex( mesh, node_lI );
*result = factor * (coord[ J_AXIS ] - centre);
}
void StgFEM_StandardConditionFunctions_ShearZ( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
DomainContext* context = (DomainContext*)_context;
Dictionary* dictionary = context->dictionary;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
double* result = (double*) _result;
double* coord;
double centre;
double factor;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = feVariable->feMesh;
/* Find Centre of Solid Body Rotation */
centre = Dictionary_GetDouble_WithDefault( dictionary, "ShearZCentre", 0.0 );
factor = Dictionary_GetDouble_WithDefault( dictionary, "ShearZFactor", 1.0 );
/* Find coordinate of node */
coord = Mesh_GetVertex( mesh, node_lI );
*result = factor * (coord[ K_AXIS ] - centre);
}
void StgFEM_StandardConditionFunctions_SimpleShearInverted( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
DomainContext* context = (DomainContext*)_context;
Dictionary* dictionary = context->dictionary;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
double* result = (double*) _result;
double* coord;
double centre;
double factor;
double yAxisInvert;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = feVariable->feMesh;
/* Find Centre of Solid Body Rotation */
centre = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SimpleShearCentreY", 0.0 );
factor = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SimpleShearFactor", 1.0 );
/* Find coordinate of node */
coord = Mesh_GetVertex( mesh, node_lI );
yAxisInvert = coord[ J_AXIS ] * -1.0 - 1.0;
*result = factor * ( 1.0 - coord[ J_AXIS ] ) ;
}
void StgFEM_StandardConditionFunctions_Extension( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
DomainContext* context = (DomainContext*)_context;
Dictionary* dictionary = context->dictionary;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
double* result = (double*) _result;
double* coord;
double centre;
double factor;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = feVariable->feMesh;
/* Find Centre of Solid Body Rotation */
centre = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"ExtensionCentreX", 0.0 );
factor = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"ExtensionFactor", 1.0 );
/* Find coordinate of node */
coord = Mesh_GetVertex( mesh, node_lI );
*result = factor * (coord[ I_AXIS ] - centre);
}
void StgFEM_StandardConditionFunctions_PartialLid_TopLayer( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* result ) {
DomainContext* context = (DomainContext*)_context;
FeVariable* velVar = NULL;
FeMesh* mesh = NULL;
double* velResult = (double*)result;
double margin = 0;
double min[3], max[3];
velVar = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = velVar->feMesh;
Mesh_GetMinimumSeparation( mesh, &margin, NULL );
Mesh_GetGlobalCoordRange( mesh, min, max );
margin *= 1.1;
if( (Mesh_GetVertex( mesh, node_lI )[I_AXIS] < (max[I_AXIS] - margin )) &&
(Mesh_GetVertex( mesh, node_lI )[I_AXIS] > (min[I_AXIS] + margin )))
{
(*velResult) = 1;
}
else {
(*velResult) = 0;
}
}
void StgFEM_StandardConditionFunctions_LinearInterpolationLid( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* result ) {
DomainContext* context = (DomainContext*)_context;
FeVariable* velVar = NULL;
FeMesh* mesh = NULL;
double* velResult = (double*)result;
double boxLength = 0;
double leftHandSideValue = 0;
double rightHandSideValue = 0;
double gradient = 0;
double min[3], max[3];
velVar = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = velVar->feMesh;
Mesh_GetGlobalCoordRange( mesh, min, max );
boxLength = max[I_AXIS] - min[I_AXIS];
leftHandSideValue = Dictionary_GetDouble_WithDefault( context->dictionary, (Dictionary_Entry_Key)"bcLeftHandSideValue", 0.0 );
rightHandSideValue = Dictionary_GetDouble_WithDefault( context->dictionary, (Dictionary_Entry_Key)"bcRightHandSideValue", 1.0 );
gradient = (rightHandSideValue - leftHandSideValue) / boxLength;
(*velResult ) = leftHandSideValue + gradient * (Mesh_GetVertex( mesh, node_lI )[I_AXIS] - min[I_AXIS] );
}
void StgFEM_StandardConditionFunctions_Lid_RampWithCentralMax( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* result ) {
DomainContext* context = (DomainContext*)_context;
FeVariable* velVar = NULL;
FeMesh* mesh = NULL;
double* velResult = (double*)result;
double boxLength = 0;
double xPosRelativeToTopLeft = 0;
double min[3], max[3];
velVar = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = velVar->feMesh;
Mesh_GetGlobalCoordRange( mesh, min, max );
xPosRelativeToTopLeft = Mesh_GetVertex( mesh, node_lI )[I_AXIS] - min[I_AXIS];
boxLength = max[I_AXIS] - min[I_AXIS];
if ( xPosRelativeToTopLeft < boxLength / 2 ) {
(*velResult) = 2 * xPosRelativeToTopLeft / boxLength;
}
else {
(*velResult) = 1 - 2 * ( xPosRelativeToTopLeft - (boxLength/2) );
}
}
void StgFEM_StandardConditionFunctions_LinearVelocityLeftWall( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* result ) {
DomainContext* context = (DomainContext*)_context;
FeVariable* velVar = NULL;
FeMesh* mesh = NULL;
double* velResult = (double*)result;
Dictionary* dictionary = context->dictionary;
double min[3], max[3];
double gradient, maxvel;
velVar = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = velVar->feMesh;
maxvel = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"MaximumVelocity_Left", 0.0 );
Mesh_GetGlobalCoordRange( mesh, min, max );
gradient = maxvel/(min[1] - max[1]);
(*velResult) = gradient*Mesh_GetVertex( mesh, node_lI )[J_AXIS];
//printf("Left velResult is %g\n",(*velResult));
}
void StgFEM_StandardConditionFunctions_LinearVelocityRightWall( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* result ) {
DomainContext* context = (DomainContext*)_context;
FeVariable* velVar = NULL;
FeMesh* mesh = NULL;
double* velResult = (double*)result;
Dictionary* dictionary = context->dictionary;
double min[3], max[3];
double gradient, maxvel;
velVar = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = velVar->feMesh;
maxvel = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"MaximumVelocity_Right", 0.0 );
Mesh_GetGlobalCoordRange( mesh, min, max );
gradient = maxvel/(max[1] - min[1]);
(*velResult) = maxvel - gradient*Mesh_GetVertex( mesh, node_lI )[J_AXIS];
//printf("Right velResult is %g\n",(*velResult));
}
void StgFEM_StandardConditionFunctions_SinusoidalLid( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* result ) {
DomainContext* context = (DomainContext*)_context;
FeVariable* velVar = NULL;
FeMesh* mesh = NULL;
double* velResult = (double*)result;
double boxLength = 0;
double linearInterp = 0;
double wavenumber;
double min[3], max[3];
wavenumber = Dictionary_GetDouble_WithDefault( context->dictionary, (Dictionary_Entry_Key)"sinusoidalLidWavenumber", 1 );
velVar = (FeVariable* )FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = velVar->feMesh;
Mesh_GetGlobalCoordRange( mesh, min, max );
boxLength = max[I_AXIS] - min[I_AXIS];
linearInterp = (Mesh_GetVertex( mesh, node_lI )[I_AXIS] - min[I_AXIS] ) / boxLength;
(*velResult) = sin( linearInterp * M_PI * wavenumber );
}
void StgFEM_StandardConditionFunctions_CornerOnly( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* result ) {
DomainContext* context = (DomainContext*)_context;
FeVariable* velVar = NULL;
FeMesh* feMesh = NULL;
double* velResult = (double*)result;
Node_GlobalIndex node_gI = 0;
unsigned inds[3];
Grid* elGrid;
velVar = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
feMesh = velVar->feMesh;
elGrid = *(Grid**)ExtensionManager_Get( feMesh->info, feMesh,
ExtensionManager_GetHandle( feMesh->info, (Name)"elGrid" ) );
node_gI = Mesh_DomainToGlobal( feMesh, MT_VERTEX, node_lI );
RegularMeshUtils_Node_1DTo3D( feMesh, node_gI, inds );
if ( inds[0] == elGrid->sizes[I_AXIS] ) {
(*velResult) = 1;
}
else {
(*velResult) = 0;
}
}
double StGermain_CosineHillValue( double* centre, double* position, double height, double diameterAtBase, Dimension_Index dim ) {
double distanceFromCentre = StGermain_DistanceBetweenPoints( centre, position, dim );
if (distanceFromCentre < diameterAtBase * 0.5 )
return height * (0.5 + 0.5 * cos( 2.0 * M_PI/diameterAtBase * distanceFromCentre ) );
else
return 0.0;
}
void StgFEM_StandardConditionFunctions_TemperatureCosineHill( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
DomainContext* context = (DomainContext*)_context;
Dictionary* dictionary = context->dictionary;
FeVariable* feVariable = NULL;
FeMesh* feMesh = NULL;
double* result = (double*) _result;
Coord centre;
Coord rotationCentre;
double omega;
double hillHeight;
double hillDiameter;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "TemperatureField" );
feMesh = feVariable->feMesh;
/* Read values from dictionary */
hillHeight = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"CosineHillHeight" , 1.0 );
hillDiameter = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"CosineHillDiameter", 1.0 );
centre[ I_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"CosineHillCentreX" , 0.0 );
centre[ J_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"CosineHillCentreY" , 0.0 );
centre[ K_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"CosineHillCentreZ" , 0.0 );
if ( Dictionary_GetBool( dictionary, "RotateCosineHill" ) ) {
/* Assume solid body rotation */
rotationCentre[ I_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SolidBodyRotationCentreX", 0.0 );
rotationCentre[ J_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SolidBodyRotationCentreY", 0.0 );
rotationCentre[ K_AXIS ] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SolidBodyRotationCentreZ", 0.0 );
omega = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SolidBodyRotationOmega", 1.0 );
StGermain_VectorSubtraction( centre, rotationCentre, centre, context->dim );
StGermain_RotateCoordinateAxis( centre, centre, K_AXIS, omega * context->currentTime );
StGermain_VectorAddition( centre, centre, rotationCentre, context->dim );
}
*result = StGermain_CosineHillValue( centre, Mesh_GetVertex( feMesh, node_lI ), hillHeight, hillDiameter, context->dim );
}
void StgFEM_StandardConditionFunctions_LinearWithSinusoidalPerturbation( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
DomainContext* context = (DomainContext*)_context;
Dictionary* dictionary = context->dictionary;
FeVariable* feVariable = NULL;
FeMesh* feMesh = NULL;
unsigned nDims;
double* result = (double*) _result;
double topLayerBC;
double bottomLayerBC;
double perturbationAmplitude;
double horizontalWaveNumber;
double verticalWaveNumber;
double scaleFactor;
double* coord;
Coord relScaledCoord;
double min[3], max[3], topLayerCoord, bottomLayerCoord;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "TemperatureField" );
feMesh = feVariable->feMesh;
nDims = Mesh_GetDimSize( feMesh );
Mesh_GetGlobalCoordRange( feMesh, min, max );
topLayerCoord = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SinusoidalTempIC_TopLayerCoord", max[J_AXIS] );
bottomLayerCoord = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SinusoidalTempIC_BottomLayerCoord", min[J_AXIS] );
topLayerBC = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SinusoidalTempIC_TopLayerBC", 0.0 );
bottomLayerBC = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SinusoidalTempIC_BottomLayerBC", 1.0 );
scaleFactor = bottomLayerBC - topLayerBC;
perturbationAmplitude = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SinusoidalTempIC_PerturbationAmplitude", 0.1 );
/* Note: these are both multiplied by pi, so wavenumber = 1 means the perturbation goes from 0 to pi, which is
* half a full sin or cos cycle. Wavenumber = 3 means the range is 0 -> 3pi, or 1 and a half full cycles. */
horizontalWaveNumber = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SinusoidalTempIC_HorizontalWaveNumber", 1.0 );
verticalWaveNumber = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SinusoidalTempIC_VerticalWaveNumber", 1.0 );
coord = Mesh_GetVertex( feMesh, node_lI );
/* if node is outside IC shape set to 0 temperature */
if( coord[J_AXIS] > topLayerCoord || coord[J_AXIS] < bottomLayerCoord ) {
*result = 0; return ;
}
/* make coord relative to box bottom left corner, then scale from 0 to 1 between box min & max */
relScaledCoord[I_AXIS] = (coord[0] - min[0]) / (max[0] - min[0]);
relScaledCoord[J_AXIS] = (coord[1] - bottomLayerCoord) / (topLayerCoord - bottomLayerCoord);
/* Note: ok to use the 1.0 below since we've already scaled the coord to somewhere between 0 to 1 */
*result = topLayerBC + scaleFactor * ( 1.0 - relScaledCoord[ J_AXIS ] )
+ perturbationAmplitude * ( cos( horizontalWaveNumber * M_PI * coord[ I_AXIS ] )
* sin( verticalWaveNumber * M_PI * relScaledCoord[ J_AXIS ] ) );
}
void StgFEM_StandardConditionFunctions_Trigonometry( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
DomainContext* context = (DomainContext*)_context;
FeVariable* feVariable = NULL;
FeMesh* feMesh = NULL;
double* result = (double*) _result;
double* coord;
double height, width;
double min[3], max[3];
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "TemperatureField" );
feMesh = feVariable->feMesh;
Mesh_GetGlobalCoordRange( feMesh, min, max );
coord = Mesh_GetVertex( feMesh, node_lI );
/* Get Aspect Ratio */
height = max[ J_AXIS ] - min[ J_AXIS ];
width = max[ I_AXIS ] - min[ I_AXIS ];
*result = 1.0 - 0.5 * M_PI * coord[ J_AXIS ] * sin( M_PI * coord[ I_AXIS ]/width );
}
#define SMALL 1.0e-5
void Stg_FEM_VelicTemperatureIC( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
DomainContext* context = (DomainContext*)_context;
FeVariable* temperatureField = (FeVariable*) FieldVariable_Register_GetByName( context->fieldVariable_Register, "TemperatureField" );
FeMesh* feMesh = temperatureField->feMesh;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double* coord;
double x;
double y;
double kx;
double ky;
int wavenumberX;
double wavenumberY;
double sigma;
double Lx;
double min[3], max[3];
/* Find coordinate of node */
coord = Mesh_GetVertex( feMesh, node_lI );
Mesh_GetGlobalCoordRange( feMesh, min, max );
/* Make sure that the box has right dimensions */
assert( ( max[ J_AXIS ] - min[ J_AXIS ] - 1.0 ) < SMALL );
Lx = max[ I_AXIS ] - min[ I_AXIS ];
x = coord[ I_AXIS ] - min[ I_AXIS ];
y = coord[ J_AXIS ] - min[ J_AXIS ];
wavenumberX = Dictionary_GetInt_WithDefault( dictionary, (Dictionary_Entry_Key)"wavenumberX", 1 );
wavenumberY = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"wavenumberY", 1.0 );
sigma = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"sigma", 1.0 );
assert( sigma > 0.0 );
assert( wavenumberY > 0.0 );
assert( wavenumberX > 0.0 );
kx = (double)wavenumberX * M_PI / Lx;
ky = (double)wavenumberY * M_PI;
*result = sigma * sin( ky * y ) * cos( kx * x );
}
/* IC from Mirko Velic. This is the IC temperature for his solB, from his Analytic Suite. Added 22-May-2006 */
void Stg_FEM_VelicTemperatureIC_SolB( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
DomainContext* context = (DomainContext*)_context;
FeVariable* temperatureField = (FeVariable*) FieldVariable_Register_GetByName( context->fieldVariable_Register, "TemperatureField" );
FeMesh* feMesh = temperatureField->feMesh;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double* coord;
double x;
double y;
double km; /* for y-direction */
double kn; /* for x-direction */
double wavenumberX;
double wavenumberY;
double L;
double sigma;
double min[3], max[3];
/* Find coordinate of node */
coord = Mesh_GetVertex( feMesh, node_lI );
Mesh_GetGlobalCoordRange( feMesh, min, max );
/* Make sure that the box has right dimensions */
assert( (max[ J_AXIS ] - min[ J_AXIS ] - 1.0 ) < SMALL );
L = max[ I_AXIS ] - min[ I_AXIS ];
x = coord[ I_AXIS ] - min[ I_AXIS ];
y = coord[ J_AXIS ] - min[ J_AXIS ];
wavenumberX = Dictionary_GetInt_WithDefault( dictionary, (Dictionary_Entry_Key)"wavenumberX", 1 );
wavenumberY = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"wavenumberY", 2.0 );
assert( wavenumberX != wavenumberY );
sigma = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"sigma", 1.0 );
kn = wavenumberX * M_PI / L;
/* TODO: Re-write Mirko's code and/or Documentation so the input parameters for these ICs are less confusing */
km = wavenumberY / L;
*result = sigma * sinh( km * y ) * cos( kn * x );
}
/* Initial Condition derived from Boundary Layer theory -
taken from P. E. van Keken, S. D. King, U. R. Schmeling, U. R. Christensen, D. Neumeister, and M.-P. Doin. A comparison of methods for the modeling of thermochemical convection. Journal of Geophysical Research, 102(B10):22477-22496, october 1997. */
void StgFEM_StandardConditionFunctions_AnalyticalTemperatureIC( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
DomainContext* context = (DomainContext*)_context;
FeVariable* feVariable = NULL;
FeMesh* feMesh = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double* coord;
double u0, v0, Q;
double x, y;
double RaT;
double lambda, height, width;
double Tu, Tl, Tr, Ts;
double min[3], max[3];
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "TemperatureField" );
feMesh = feVariable->feMesh;
coord = Mesh_GetVertex( feMesh, node_lI );
Mesh_GetGlobalCoordRange( feMesh, min, max );
/* Get Aspect Ratio */
height = max[ J_AXIS ] - min[ J_AXIS ];
width = max[ I_AXIS ] - min[ I_AXIS ];
lambda = width/height;
x = coord[ I_AXIS ] - min[ I_AXIS ];
y = coord[ J_AXIS ] - min[ J_AXIS ];
/* Get thermal Rayleigh Number from Dictionary */
RaT = Dictionary_GetDouble( dictionary, "RaT" );
/* Horizontal fluid velocity at upper boundary & lower boundary - Equation A3 */
u0 = pow( lambda , 7.0/3.0 )/ pow(1 + lambda*lambda*lambda*lambda, 2.0/3.0) * pow(0.5*RaT/sqrt(M_PI) , 2.0/3.0);
/* Vertical velocity of the upwelling and downwellings - Modified from Van Keken to match Turcotte and Shubert */
v0 = u0; /*lambda; */
/* Total rate of heat flow out of the top of the cell per unit distance along the axis of the roll - Equation A3 */
Q = 2.0 * sqrt(M_1_PI * lambda/u0);
Tu = 0.5 * erf( 0.5 * ( 1 - y ) * sqrt(u0/x) ); /* Equation A2a */
Tl = 1.0 - 0.5 * erf(0.5 * y * sqrt(u0/(lambda-x))); /* Equation A2b */
Tr = 0.5 + 0.5*Q/sqrt(M_PI) * sqrt(v0/(y+1)) * exp( -x*x*v0/(4*y+4) ); /* Equation A2c */
Ts = 0.5 - 0.5*Q/sqrt(M_PI) * sqrt(v0/(2-y)) * exp( -(lambda - x) * (lambda - x) * v0 / (8 - 4*y) ); /* Equation A2d */
/* Equation A1 */
*result = Tu + Tl + Tr + Ts - 1.5;
/* Crop result */
if ( *result > 1.0 )
*result = 1.0;
else if ( *result < 0.0 )
*result = 0.0;
}
void StgFEM_StandardConditionFunctions_EdgeDriveConvectionIC( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result )
{
DomainContext* context = (DomainContext*)_context;
Dictionary* dictionary = context->dictionary;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
double* result = (double*) _result;
double perturbationAmplitude;
double thermalAnomalyOffset;
double* coord;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "TemperatureField" );
mesh = feVariable->feMesh;
perturbationAmplitude = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SinusoidalTempIC_PerturbationAmplitude", 0.1 );
thermalAnomalyOffset = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"thermalAnomalyOffset", 0.0 );
coord = Mesh_GetVertex( mesh, node_lI );
/* eqn 1 from S.D.King & D.L. Anderson, "Edge-drive convection", EPSL 160 (1998) 289-296 */
*result = 1.0 + perturbationAmplitude * sin( M_PI * coord[ J_AXIS ] ) * cos( 0.5 * M_PI * ( coord[ I_AXIS ] + thermalAnomalyOffset ) );
}
void StgFEM_StandardConditionFunctions_ThermalEdgeDriveConvectionIC( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result )
{
DomainContext* context = (DomainContext*)_context;
Dictionary* dictionary = context->dictionary;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
double* result = (double*) _result;
double* coord;
int dim;
double contStartX, contEndX;
double contStartY, contEndY;
double contStartZ, contEndZ;
double minY, maxY, interiorTemp;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "TemperatureField" );
mesh = feVariable->feMesh;
coord = Mesh_GetVertex( mesh, node_lI );
dim = Dictionary_GetInt_WithDefault( dictionary, (Dictionary_Entry_Key)"dim", 0.0 );
contStartX = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"contStartX", 0.0 );
contEndX = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"contEndX", 0.0 );
contStartY = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"contStartY", 0.0 );
contEndY = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"contEndY", 0.0 );
minY = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"minY", 0.0 );
maxY = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"maxY", 0.0 );
interiorTemp = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"interiorTemp", 1.0 );
if ( dim == 3 ) {
contStartZ = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"contStartZ", 0.0 );
contEndZ = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"contEndZ", 0.0 );
}
if(( coord[I_AXIS] >= contStartX && coord[ I_AXIS ] <= contEndX ) && ( coord[J_AXIS] >= contStartY && coord[ J_AXIS ] <= contEndY )) {
if ( dim == 3 ) {
if ( coord[K_AXIS] >= contStartZ && coord[ K_AXIS ] <= contEndZ )
*result = 0.0;
else
*result = interiorTemp;
}
}
else
*result = interiorTemp;
}
void StgFEM_StandardConditionFunctions_SinusoidalExtension( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double frequency;
double vel0;
double amplitude;
double phaseShift;
frequency = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SinusoidalExtensionFrequency", 1.0 );
vel0 = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SinusoidalExtensionVelocity", 0.0 );
amplitude = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SinusoidalExtensionAmplitude", 0.0 );
phaseShift = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SinusoidalExtensionPhaseShift", 0.0 );
*result = vel0 + amplitude * cos( 2.0 * M_PI * frequency * (context->currentTime + context->dt - phaseShift ) );
}
void StgFEM_StandardConditionFunctions_StepFunction( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
FeMesh* feMesh = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double* coord;
double lower_offset, upper_offset;
double value, lower_value, upper_value;
unsigned dim;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
feMesh = feVariable->feMesh;
coord = Mesh_GetVertex( feMesh, node_lI );
lower_offset = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionLowerOffset", 0.0 );
upper_offset = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionUpperOffset", lower_offset );
value = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionValue", 0.0 );
dim = Dictionary_GetUnsignedInt_WithDefault( dictionary, "StepFunctionDim", 0 );
lower_value = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionLowerValue", 0.0 );
upper_value = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionUpperValue", value );
if(dim==3)
{
dim=0;
coord=&(context->currentTime);
}
if(coord[dim] < lower_offset) {
*result=lower_value;
} else if(coord[dim] < upper_offset) {
*result=lower_value +
(upper_value-lower_value)
*(coord[dim] - lower_offset)/(upper_offset-lower_offset);
} else {
*result=upper_value;
}
}
void StG_FEM_StandardConditionFunctions_StepFunctionProduct1( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double* coord;
double start, end;
double value;
unsigned dim;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = feVariable->feMesh;
coord = Mesh_GetVertex( mesh, node_lI );
start = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct1Start", 0.0 );
end = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct1End", 0.0 );
value = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct1Value", 0.0 );
dim = Dictionary_GetUnsignedInt_WithDefault( dictionary, "StepFunctionProduct1Dim", 0 );
if( coord[dim] > start && coord[dim] < end ) {
*result = value;
}
else {
*result = 0;
}
}
void StG_FEM_StandardConditionFunctions_StepFunctionProduct2( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double* coord;
double start, end;
double value;
unsigned dim;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = feVariable->feMesh;
coord = Mesh_GetVertex( mesh, node_lI );
start = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct2Start", 0.0 );
end = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct2End", 0.0 );
value = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct2Value", 0.0 );
dim = Dictionary_GetUnsignedInt_WithDefault( dictionary, "StepFunctionProduct2Dim", 0 );
if( coord[dim] > start && coord[dim] < end ) {
*result = value;
}
else {
*result = 0;
}
}
void StG_FEM_StandardConditionFunctions_StepFunctionProduct3( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double* coord;
double start, end;
double value;
unsigned dim;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = feVariable->feMesh;
coord = Mesh_GetVertex( mesh, node_lI );
start = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct3Start", 0.0 );
end = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct3End", 0.0 );
value = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct3Value", 0.0 );
dim = Dictionary_GetUnsignedInt_WithDefault( dictionary, "StepFunctionProduct3Dim", 1 );
if( coord[dim] > start && coord[dim] < end ) {
*result = value;
}
else {
*result = 0;
}
}
void StG_FEM_StandardConditionFunctions_StepFunctionProduct4( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double* coord;
double start, end;
double value;
unsigned dim;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = feVariable->feMesh;
coord = Mesh_GetVertex( mesh, node_lI );
start = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct4Start", 0.0 );
end = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct4End", 0.0 );
value = Dictionary_GetDouble_WithDefault( dictionary, "StepFunctionProduct4Value", 0.0 );
dim = Dictionary_GetUnsignedInt_WithDefault( dictionary, "StepFunctionProduct4Dim", 1 );
if( coord[dim] > start && coord[dim] < end ) {
*result = value;
}
else {
*result = 0;
}
}
/* A Gaussian GaussianHeight*exp(-((GaussianCenter-x)/GaussianWidth)^2) */
void StG_FEM_StandardConditionFunctions_Gaussian
( Node_LocalIndex node_lI, Variable_Index var_I, void* _context,
void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double* coord;
double center, width, height;
unsigned dim;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = feVariable->feMesh;
coord = Mesh_GetVertex( mesh, node_lI );
center = Dictionary_GetDouble_WithDefault( dictionary,
"GaussianCenter", 0.0 );
width = Dictionary_GetDouble_WithDefault( dictionary,
"GaussianWidth", 1.0 );
height = Dictionary_GetDouble_WithDefault( dictionary,
"GaussianHeight", 1.0 );
dim = Dictionary_GetUnsignedInt_WithDefault( dictionary,
"GaussianDim", 0 );
*result=height*exp(-(center-coord[dim])*(center-coord[dim])
/(width*width));
}
void StgFEM_StandardConditionFunctions_MovingStepFunction( Node_LocalIndex nodeInd, Variable_Index varInd, void* _ctx, void* _result ) {
FiniteElementContext* ctx = (FiniteElementContext*)_ctx;
FeVariable* velField;
FeMesh* mesh;
Dictionary* dict = ctx->dictionary;
double* result = (double*)_result;
double* coord, offsetLower, offsetUpper, left, right;
double *wallCrd, pos;
int dim, wallDepth;
unsigned ijk[3];
char* movingWall;
Grid* grid;
/*
** Get the velocity field. */
velField = (FeVariable*)FieldVariable_Register_GetByName(
ctx->fieldVariable_Register, "VelocityField" );
/*
** Get the mesh and the coordinate of the node. */
mesh = velField->feMesh;
coord = Mesh_GetVertex( mesh, nodeInd );
/*
** Extract all the parameters we need from the dictionary. */
offsetLower = Dictionary_GetDouble_WithDefault( dict, (Dictionary_Entry_Key)"MovingStepFunctionOffsetLower", 0.0 );
offsetUpper = Dictionary_GetDouble_WithDefault( dict, (Dictionary_Entry_Key)"MovingStepFunctionOffsetUpper", 0.0 );
dim = Dictionary_GetUnsignedInt_WithDefault( dict, "MovingStepFunctionDim", 0 );
left = Dictionary_GetDouble_WithDefault( dict, (Dictionary_Entry_Key)"MovingStepFunctionLeftSide", 0.0 );
right = Dictionary_GetDouble_WithDefault( dict, (Dictionary_Entry_Key)"MovingStepFunctionRightSide", 0.0 );
movingWall = Dictionary_GetString_WithDefault( dict, "MovingStepFunctionMovingWall", "lower" );
wallDepth = Dictionary_GetInt_WithDefault( dict, (Dictionary_Entry_Key)"MovingStepFunctionWallDepth", 0 );
/*
** Because we're dealing with a moving step function, we need to calculate
** from where the offset should be applied. */
grid = *(Grid**)Mesh_GetExtension( mesh, Grid**, "vertexGrid" );
assert( grid );
memset( ijk, 0, 3 * sizeof(unsigned) );
if( !strcmp( movingWall, "lower" ) ) {
ijk[dim] = wallDepth;
wallCrd = Mesh_GetVertex( mesh, Grid_Project( grid, ijk ) );
offsetLower += wallCrd[dim];
offsetUpper += wallCrd[dim];
}
else {
ijk[dim] = grid->sizes[dim] - wallDepth - 1;
wallCrd = Mesh_GetVertex( mesh, Grid_Project( grid, ijk ) );
offsetLower += wallCrd[dim];
offsetUpper += wallCrd[dim];
}
/*
** Apply the set of parameters to this node. */
pos = coord[dim];
if( pos <= offsetLower )
*result = left;
else if( pos >= offsetUpper )
*result = right;
else {
*result = left + ((pos - offsetLower) / (offsetUpper - offsetLower)) * (right - left);
}
}
void StgFEM_StandardConditionFunctions_ConvectionBenchmark( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
/* This IC is for the 2D ConvectionBenchmark defined in
* http://www.mcc.monash.edu.au/twiki/view/Research/ConvectionBenchmarks
*/
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
FeMesh* mesh;
double* result = (double*) _result;
double min[3], max[3];
double* coord;
double x,y;
double Lx, Ly;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "TemperatureField" );
mesh = (FeMesh*)feVariable->feMesh;
Mesh_GetGlobalCoordRange( mesh, min, max );
Lx = max[ I_AXIS ] - min[ I_AXIS ];
Ly = max[ J_AXIS ] - min[ J_AXIS ];
coord = Mesh_GetVertex( mesh, node_lI );
x = ( coord[0] - min[ I_AXIS ] ) / Lx;
y = ( coord[1] - min[ J_AXIS ] ) / Ly;
*result = ( 1 - y ) + ( cos( M_PI * x ) * sin( M_PI * y ) ) / 100 ;
}
void StgFEM_StandardConditionFunctions_ConstantVector( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
DomainContext* context = (DomainContext*)_context;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
result[0] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"ConstantValueX", 0.0 );
result[1] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"ConstantValueY", 0.0 );
if (context->dim == 3 )
result[2] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"ConstantValueZ", 0.0 );
}
/* 3D spec ridge top BC (for milestone 1 of magma project )
* to be applied to the top x-z plane of the domain */
void StgFEM_StandardConditionFunctions_SpecRidge3D( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
FeMesh* feMesh = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double* coord;
double leftVal;
double rightVal;
double xOffset1;
double xOffset2;
double yOffset1, yOffset2;
double xBegin, xEnd;
double zBegin, zEnd;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
feMesh = feVariable->feMesh;
coord = Mesh_GetVertex( feMesh, node_lI );
leftVal = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SpecRidge3DLeftSide", 0.0 );
rightVal = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SpecRidge3DRightSide", 0.0 );
xOffset1 = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SpecRidge3DXOffset1", 0.0 );
xOffset2 = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SpecRidge3DXOffset2", 0.0 );
yOffset1 = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SpecRidge3DZOffset1", 0.0 );
yOffset2 = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SpecRidge3DZOffset2", 0.0 );
xBegin = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SpecRidge3DXBegin", 0.0 );
xEnd = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SpecRidge3DXEnd", 0.0 );
zBegin = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SpecRidge3DZBegin", 0.0 );
zEnd = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"SpecRidge3DZEnd", 0.0 );
if( coord[0] < xBegin || coord[0] > xEnd ||
coord[2] < zBegin || coord[2] > zEnd )
{
*result = 0.0;
}
else if( coord[0] < xOffset1 )
*result = leftVal;
else if( coord[0] < xOffset2 && coord[2] > yOffset1 && coord[2] < yOffset2 )
*result = leftVal;
else
*result = rightVal;
}
void StgFEM_StandardConditionFunctions_TemperatureProfile( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double* coord;
double T_0, H_0, dH, H, H_m, A, B, C, x_min, x_max, y_max, T_m, xc, dum;
/* G.Ito 10/08 added variables x_min, x_max, T_m, Xc, to do variation in x
and limit maximum T */
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = feVariable->feMesh;
coord = Mesh_GetVertex( mesh, node_lI );
T_0 = Dictionary_GetDouble_WithDefault( dictionary, "TemperatureProfileTop", 0.0 );
T_m = Dictionary_GetDouble_WithDefault( dictionary, "TemperatureProfileMax", 10000.0 );
H_0 = Dictionary_GetDouble_WithDefault( dictionary, "TemperatureProfileH0", -1.0 );
H_m = Dictionary_GetDouble_WithDefault( dictionary, "TemperatureProfileHm", 1.0e+8 );
dH = Dictionary_GetDouble_WithDefault( dictionary, "TemperatureProfiledH", 0.0 );
A = Dictionary_GetDouble_WithDefault( dictionary, "TemperatureProfileLinearCoefficient", 0.0 );
B = Dictionary_GetDouble_WithDefault( dictionary, "TemperatureProfileExponentialCoefficient1", 0.0 );
C = Dictionary_GetDouble_WithDefault( dictionary, "TemperatureProfileExponentialCoefficient2", 0.0 );
y_max = Dictionary_GetDouble_WithDefault( dictionary, "maxY", 0.0 );
x_max = Dictionary_GetDouble_WithDefault( dictionary, "maxX", 0.0 );
x_min = Dictionary_GetDouble_WithDefault( dictionary, "minX", 0.0 );
xc = Dictionary_GetDouble_WithDefault( dictionary, "ExtensionCentreX", 0.0 );
if (H_0<0.0)
{
if(coord[1]>y_max)
{
*result=T_0;
}
else
{
*result=T_0 + A*(y_max-coord[1]) + B*(1-exp(-C*(y_max-coord[1])));
}
}
else
{
if(coord[1]>=y_max)
{
*result=T_0;
}
else
{
H=H_0 + 2*fabs(coord[0]-xc)/(x_max-x_min)*dH;
if (H>H_m) H=H_m;
dum=T_0 + ((T_m-T_0)/H)*(y_max-coord[1])
+ B*(1-exp(-C*(y_max-coord[1])));
if (dum>T_m) dum=T_m;
*result=dum;
}
}
}
void StgFEM_StandardConditionFunctions_ERF( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
FeMesh* feMesh = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double* coord;
double width, scale, dilate, offset, constant;
unsigned dim;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
feMesh = feVariable->feMesh;
coord = Mesh_GetVertex( feMesh, node_lI );
width = Dictionary_GetDouble_WithDefault( dictionary, "ERFWidth", 0.0 );
offset= Dictionary_GetDouble_WithDefault(dictionary, "ERFOffset",0.0 );
constant=Dictionary_GetDouble_WithDefault(dictionary,"ERFConstant",0.0);
scale = Dictionary_GetDouble_WithDefault( dictionary, "ERFScale", 1.0 );
dilate = Dictionary_GetDouble_WithDefault( dictionary,"ERFDilate",1.0 );
dim = Dictionary_GetUnsignedInt_WithDefault( dictionary, "ERFDim", 0 );
if(dim==3)
{
dim=0;
coord=&(context->currentTime);
}
if(coord[dim]+offset < -width && width!=0)
*result=constant-scale;
else if(coord[dim]+offset > width && width!=0)
*result=constant+scale;
else
*result=constant+scale*erf((coord[dim]+offset)/dilate);
}
void StgFEM_StandardConditionFunctions_ERFC(Node_LocalIndex node_lI,
Variable_Index var_I,
void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
FeMesh* feMesh = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double* coord;
double width, scale, dilate, offset, constant;
unsigned dim;
feVariable = (FeVariable*)FieldVariable_Register_GetByName
( context->fieldVariable_Register, "VelocityField" );
feMesh = feVariable->feMesh;
coord = Mesh_GetVertex( feMesh, node_lI );
width = Dictionary_GetDouble_WithDefault(dictionary, "ERFCWidth", 0.0 );
offset= Dictionary_GetDouble_WithDefault(dictionary, "ERFCOffset",0.0 );
constant=Dictionary_GetDouble_WithDefault(dictionary,"ERFCConstant",0.0);
scale = Dictionary_GetDouble_WithDefault(dictionary, "ERFCScale", 1.0 );
dilate = Dictionary_GetDouble_WithDefault(dictionary,"ERFCDilate",1.0 );
dim = Dictionary_GetUnsignedInt_WithDefault(dictionary, "ERFCDim", 0 );
if(dim==3)
{
dim=0;
coord=&(context->currentTime);
}
if(coord[dim]+offset < -width && width!=0)
*result=constant-scale;
else if(coord[dim]+offset > width && width!=0)
*result=constant+scale;
else
*result=constant+scale*erfc((coord[dim]+offset)/dilate);
}
void StgFEM_StandardConditionFunctions_RubberSheet( Node_LocalIndex node_lI,
Variable_Index var_I,
void* _context,
void* _result )
{
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
FeMesh* feMesh = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double* coord;
double lower_offset, upper_offset;
double lower_value, upper_value, time;
unsigned dim;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
feMesh = feVariable->feMesh;
coord = Mesh_GetVertex( feMesh, node_lI );
lower_offset = Dictionary_GetDouble_WithDefault( dictionary,
"RubberSheetLowerOffset",
0.0 );
upper_offset = Dictionary_GetDouble_WithDefault( dictionary,
"RubberSheetUpperOffset",
lower_offset );
dim = Dictionary_GetUnsignedInt_WithDefault( dictionary,
"RubberSheetDim", 0 );
lower_value = Dictionary_GetDouble_WithDefault( dictionary,
"RubberSheetLowerValue",
0.0 );
upper_value = Dictionary_GetDouble_WithDefault( dictionary,
"RubberSheetUpperValue",
0.0 );
time=context->currentTime;
if(coord[dim] < lower_offset + lower_value*time)
{
*result=lower_value;
}
else if(coord[dim] < upper_offset + upper_value*time)
{
double min[3], max[3];
Mesh_GetGlobalCoordRange( feMesh, min, max );
*result=lower_value +
(upper_value-lower_value)
*(coord[dim] - min[dim])/(max[dim]-min[dim]);
}
else
{
*result=upper_value;
}
}
/* get the BC's from the analytic solution as stored on the relevant FeVariable */
void StgFEM_StandardConditionFunctions_SpectralBCX( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* analyticFeVarX = NULL;
FeVariable* numericFeVar = NULL;
double* result = (double*) _result;
/*FeMesh* feMesh = NULL;
double* coord;
Node_LocalIndex analyticNodeI;
Element_DomainIndex analyticElement_I;
double analyticLocalElementCoord[3];
FeMesh* analyticFeMesh;
*/
analyticFeVarX = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "SpectralVelocityXField" );
numericFeVar = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
//feMesh = numericFeVar->feMesh;
//coord = Mesh_GetVertex( feMesh, node_lI );
//analyticFeMesh = analyticFeVarX->feMesh;
//if( Mesh_SearchElements( analyticFeMesh, coord, &analyticElement_I ) ) {
// FeMesh_CoordGlobalToLocal( analyticFeMesh, analyticElement_I, coord, analyticLocalElementCoord );
// FeVariable_InterpolateWithinElement( analyticFeVarX, analyticElement_I, analyticLocalElementCoord, result );
//}
//else { /* numerical solution node outside analytic mesh - just find closest point & use that */
// analyticNodeI = Mesh_NearestVertex( analyticFeMesh, coord );
// FeVariable_GetValueAtNode( analyticFeVarX, analyticNodeI, result );
//}
FeVariable_GetValueAtNode( analyticFeVarX, node_lI, result );
}
void StgFEM_StandardConditionFunctions_SpectralBCY( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* analyticFeVarY = NULL;
FeVariable* numericFeVar = NULL;
double* result = (double*) _result;
/*FeMesh* feMesh = NULL;
double* coord;
Node_LocalIndex analyticNodeI;
Element_DomainIndex analyticElement_I;
double analyticLocalElementCoord[3];
FeMesh* analyticFeMesh;
*/
analyticFeVarY = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "SpectralVelocityYField" );
numericFeVar = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
//feMesh = numericFeVar->feMesh;
//coord = Mesh_GetVertex( feMesh, node_lI );
//analyticFeMesh = analyticFeVarY->feMesh;
//if( Mesh_SearchElements( analyticFeMesh, coord, &analyticElement_I ) ) {
// FeMesh_CoordGlobalToLocal( analyticFeMesh, analyticElement_I, coord, analyticLocalElementCoord );
// FeVariable_InterpolateWithinElement( analyticFeVarY, analyticElement_I, analyticLocalElementCoord, result );
//}
//else {
// analyticNodeI = Mesh_NearestVertex( analyticFeMesh, coord );
// FeVariable_GetValueAtNode( analyticFeVarY, analyticNodeI, result );
//}
FeVariable_GetValueAtNode( analyticFeVarY, node_lI, result );
}
void StgFEM_StandardConditionFunctions_SpectralBCZ( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* analyticFeVarZ = NULL;
FeVariable* numericFeVar = NULL;
double* result = (double*) _result;
/*
FeMesh* feMesh = NULL;
double* coord;
Node_LocalIndex analyticNodeI;
Element_DomainIndex analyticElement_I;
double analyticLocalElementCoord[3];
FeMesh* analyticFeMesh;
*/
analyticFeVarZ = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "SpectralVelocityZField" );
numericFeVar = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
//feMesh = numericFeVar->feMesh;
//coord = Mesh_GetVertex( feMesh, node_lI );
//analyticFeMesh = analyticFeVarZ->feMesh;
//if( Mesh_SearchElements( analyticFeMesh, coord, &analyticElement_I ) ) {
// FeMesh_CoordGlobalToLocal( analyticFeMesh, analyticElement_I, coord, analyticLocalElementCoord );
// FeVariable_InterpolateWithinElement( analyticFeVarZ, analyticElement_I, analyticLocalElementCoord, result );
//}
//else {
// analyticNodeI = Mesh_NearestVertex( analyticFeMesh, coord );
// FeVariable_GetValueAtNode( analyticFeVarZ, analyticNodeI, result );
//}
FeVariable_GetValueAtNode( analyticFeVarZ, node_lI, result );
}
void StgFEM_StandardConditionFunctions_SpectralPressureBCX( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* analyticFeVarX = NULL;
FeVariable* numericFeVar = NULL;
FeMesh* feMesh = NULL;
double* result = (double*) _result;
double* coord;
analyticFeVarX = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "SpectralPressureField" );
numericFeVar = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "PressureField" );
feMesh = numericFeVar->feMesh;
coord = Mesh_GetVertex( feMesh, node_lI );
FeVariable_GetValueAtNode( analyticFeVarX, node_lI, result );
}
void StgFEM_StandardConditionFunctions_SpectralPressureBCY( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* analyticFeVarY = NULL;
FeVariable* numericFeVar = NULL;
FeMesh* feMesh = NULL;
double* result = (double*) _result;
double* coord;
analyticFeVarY = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "SpectralPressureField" );
numericFeVar = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "PressureField" );
feMesh = numericFeVar->feMesh;
coord = Mesh_GetVertex( feMesh, node_lI );
FeVariable_GetValueAtNode( analyticFeVarY, node_lI, result );
}
/* error function for use in 3D spec ridge top BC */
double errorFunction( double z, int n ) {
double pi = 3.1415926535;
double a;
double erf = 0.0;
int denom;
int i, j;
a = 2.0/sqrt( pi );
for( i=0 ; i<n ; i++ ) {
denom = 1;
for( j=1 ; j<=2*i+1 ; j+=2 )
denom *= j;
erf += pow( 2, i )*pow( z, 2*i+1 )/denom;
}
return erf *= a*exp( -1.0*z*z );
}
void StgFEM_StandardConditionFunctions_ErrorFunc( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
FeMesh* feMesh = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double* coord;
double dilate;
double width;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
feMesh = feVariable->feMesh;
coord = Mesh_GetVertex( feMesh, node_lI );
dilate = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"ErrorFuncDilate", 0.0 );
width = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"ErrorFuncWidth", 0.0 );
if( coord[0] < -1.0*width ) {
*result = -1.0;
}
else if( coord[0] > width ) {
*result = 1.0;
}
else {
*result = errorFunction( coord[0]/dilate, 5 );
}
}
void StgFEM_StandardConditionFunctions_GaussianDistribution( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
Name variableName;
double* coord;
unsigned nDims = context->dim;
unsigned dim_I;
double orig[3];
double sigma = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"sigma", 1.0 );
double gaussianScale = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"GaussianScale", 1.0 );
double background = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"backgroundValue", 1.0 );
double distsq = 0.0;
variableName = Dictionary_GetString_WithDefault( dictionary, "FieldVariable", "" );
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, variableName );
coord = Mesh_GetVertex( feVariable->feMesh, node_lI );
orig[0] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"x0", 0.0 );
orig[1] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"y0", 0.0 );
orig[2] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"z0", 0.0 );
for( dim_I = 0; dim_I < nDims; dim_I++ )
distsq += ( coord[dim_I] - orig[dim_I] ) * ( coord[dim_I] - orig[dim_I] );
*result = gaussianScale * exp( -distsq / ( 2.0 * sigma * sigma ) ) + background;
}
void StgFEM_StandardConditionFunctions_GravitationalPotential( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
Name variableName;
double* coord;
variableName = Dictionary_GetString_WithDefault( dictionary, "FieldVariable", "" );
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, variableName );
coord = Mesh_GetVertex( feVariable->feMesh, node_lI );
*result = -1.0 * coord[J_AXIS];
}
void StgFEM_StandardConditionFunctions_1DGaussianDistribution( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
Name variableName;
double* coord;
double orig[3];
double sigma = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"sigma", 1.0 );
double gaussianScale = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"GaussianScale", 1.0 );
double background = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"backgroundValue", 1.0 );
double distsq = 0.0;
variableName = Dictionary_GetString_WithDefault( dictionary, "FieldVariable", "" );
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, variableName );
coord = Mesh_GetVertex( feVariable->feMesh, node_lI );
orig[0] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"x0", 0.0 );
orig[1] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"y0", 0.0 );
orig[2] = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"z0", 0.0 );
distsq = ( coord[J_AXIS] - orig[J_AXIS] ) * ( coord[J_AXIS] - orig[J_AXIS] );
*result = gaussianScale * exp( -distsq / ( 2.0 * sigma * sigma ) ) + background;
}
void StgFEM_StandardConditionFunctions_HalfContainer( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
Name variableName;
double* coord;
double halfPoint = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"halfPoint", 0.0 );
variableName = Dictionary_GetString_WithDefault( dictionary, "FieldVariable", "" );
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, variableName );
coord = Mesh_GetVertex( feVariable->feMesh, node_lI );
if( coord[1] < halfPoint )
*result = 1;
else
*result = 0;
}
void StgFEM_StandardConditionFunctions_ConstantValue( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double value = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"constantValue", 1.0 );
*result = value;
}
void StgFEM_StandardConditionFunctions_DiagonalLine( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double width = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"lineWidth", 1.0 );
double* coord;
Name variableName;
FeVariable* feVariable = NULL;
variableName = Dictionary_GetString_WithDefault( dictionary, "FieldVariable", "" );
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, variableName );
coord = Mesh_GetVertex( feVariable->feMesh, node_lI );
if( fabs( coord[0] - coord[1] ) < width )
*result = 1.0;
else
*result = 0.0;
}
void StgFEM_StandardConditionFunctions_DeltaFunction( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
FiniteElementContext * context = (FiniteElementContext*)_context;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double epsilon = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"deltaFunctionEpsilon", 0.001 );
unsigned dim = Dictionary_GetUnsignedInt_WithDefault( dictionary, "deltaFunctionDim", 0 );
double centre = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"deltaFunctionCentre", 0.5 );
double value = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"deltaFunctionValue", 1.0 );
double* coord;
Name variableName = Dictionary_GetString_WithDefault( dictionary, "DeltaFunctionFeVariable", "" );
FeVariable* feVariable = (FeVariable*) FieldVariable_Register_GetByName( context->fieldVariable_Register, variableName );
coord = Mesh_GetVertex( feVariable->feMesh, node_lI );
*result = (fabs( coord[dim] - centre ) < epsilon) ? value : 0.0;
}
void StgFEM_StandardConditionFunctions_InflowBottom( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result ) {
DomainContext* context = (DomainContext*)_context;
FeVariable* feVariable;
Dictionary* dictionary = context->dictionary;
FeMesh* mesh = NULL;
double* result = (double*) _result;
double sideLength, wallLength, sideV;
double min[3], max[3];
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = feVariable->feMesh;
Mesh_GetGlobalCoordRange( mesh, min, max );
sideLength = max[1] - min[1];
wallLength = max[0] - min[0];
sideV = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"InflowSideVelocity", 1.0 );
*result = 2.0 * sideV * sideLength / wallLength;
}
void StgFEM_StandardConditionFunctions_GaussianTube( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result )
{
DomainContext* context = (DomainContext*)_context;
Dictionary* dictionary = context->dictionary;
FeVariable* feVariable = NULL;
FeMesh* feMesh = NULL;
unsigned nDims;
double* result = (double*) _result;
double a1,b1,c1, a2,b2,c2, x,y,z,r_y,r_yz;
double* coord;
double min[3], max[3];
double y_shift, z_shift;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "TemperatureField" );
feMesh = feVariable->feMesh;
nDims = Mesh_GetDimSize( feMesh );
Mesh_GetGlobalCoordRange( feMesh, min, max );
a1 = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"GaussianTube_a1", 1.0 ); /* Scales the magnitude of the perturbation. */
c1 = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"GaussianTube_c1", 0.1 ); /* Controls the smoothing length. Smaller values produce less smoothing. */
a2 = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"GaussianTube_a2", 0.05 ); /* Controls ampltude of oscillations */
b2 = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"GaussianTube_b2", 6.28318530718 ); /* Controls frequency of oscillations */
c2 = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"GaussianTube_c2", 1.570796326795 ); /* Shifts oscillations */
y_shift = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"GaussianTube_y_origin", 0.0 );
z_shift = Dictionary_GetDouble_WithDefault( dictionary, (Dictionary_Entry_Key)"GaussianTube_z_origin", 0.0 );
coord = Mesh_GetVertex( feMesh, node_lI );
x = coord[ I_AXIS ];
y = coord[ J_AXIS ];
y = y - y_shift;
if (nDims==2) {
b1 = a2 * sin( b2*x - c2 );
r_y = sqrt( (y-b1)*(y-b1) );
*result = a1 * exp( -(r_y * r_y) / (2.0*c1*c1) );
}
if (nDims==3) {
z = coord[ K_AXIS ];
z = z - z_shift;
b1 = a2 * sin( b2*x - c2 );
r_yz = sqrt( (y-b1)*(y-b1) + z*z );
*result = a1 * exp( -(r_yz * r_yz) / (2.0*c1*c1) );
}
}
void StgFEM_StandardConditionFunctions_WarsTemperature( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result )
{
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double* coord;
double EAEnd, WarsStart, WarsHeight, WarsTTop,
WarsTBottom, h, maxY;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = feVariable->feMesh;
coord = Mesh_GetVertex( mesh, node_lI );
EAEnd = Dictionary_GetDouble( dictionary, "EAEnd");
WarsStart = Dictionary_GetDouble( dictionary, "WarsStart");
WarsHeight = Dictionary_GetDouble( dictionary, "WarsHeight");
WarsTTop = Dictionary_GetDouble( dictionary, "WarsTTop");
WarsTBottom = Dictionary_GetDouble( dictionary, "WarsTBottom");
maxY=Dictionary_GetDouble( dictionary, "maxY");
h=WarsHeight*(coord[0]-EAEnd)/(WarsStart-EAEnd);
if(coord[0]<EAEnd)
h=0;
if(coord[0]>WarsStart)
h=WarsHeight;
*result=WarsTBottom + ((coord[1]-h)/(maxY-h))*(WarsTTop-WarsTBottom);
}
void StgFEM_StandardConditionFunctions_Quadratic( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result )
{
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double* coord;
int dim;
double a, b, c;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = feVariable->feMesh;
coord = Mesh_GetVertex( mesh, node_lI );
dim = Dictionary_GetInt( dictionary, "Quadratic_Dim");
a = Dictionary_GetDouble( dictionary, "Quadratic_Constant");
b = Dictionary_GetDouble( dictionary, "Quadratic_Linear");
c = Dictionary_GetDouble( dictionary, "Quadratic_Quadratic");
*result= a + coord[dim]*(b + c*coord[dim]);
}
int Binary_Search(double *data, int s, int e, double value);
void StgFEM_StandardConditionFunctions_FileN( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result, int file_num, double *coords, double *data);
void StgFEM_StandardConditionFunctions_File1( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result )
{
static double *coords=NULL;
static double *data=NULL;
StgFEM_StandardConditionFunctions_FileN(node_lI,var_I,_context,_result,1,
coords,data);
}
void StgFEM_StandardConditionFunctions_File2( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result )
{
static double *coords=NULL;
static double *data=NULL;
StgFEM_StandardConditionFunctions_FileN(node_lI,var_I,_context,_result,2,
coords,data);
}
void StgFEM_StandardConditionFunctions_File3( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result )
{
static double *coords=NULL;
static double *data=NULL;
StgFEM_StandardConditionFunctions_FileN(node_lI,var_I,_context,_result,3,
coords,data);
}
void StgFEM_StandardConditionFunctions_File4( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result )
{
static double *coords=NULL;
static double *data=NULL;
StgFEM_StandardConditionFunctions_FileN(node_lI,var_I,_context,_result,4,
coords,data);
}
void StgFEM_StandardConditionFunctions_File5( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result )
{
static double *coords=NULL;
static double *data=NULL;
StgFEM_StandardConditionFunctions_FileN(node_lI,var_I,_context,_result,5,
coords,data);
}
void StgFEM_StandardConditionFunctions_File6( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result )
{
static double *coords=NULL;
static double *data=NULL;
StgFEM_StandardConditionFunctions_FileN(node_lI,var_I,_context,_result,6,
coords,data);
}
void StgFEM_StandardConditionFunctions_File7( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result )
{
static double *coords=NULL;
static double *data=NULL;
StgFEM_StandardConditionFunctions_FileN(node_lI,var_I,_context,_result,7,
coords,data);
}
void StgFEM_StandardConditionFunctions_File8( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result )
{
static double *coords=NULL;
static double *data=NULL;
StgFEM_StandardConditionFunctions_FileN(node_lI,var_I,_context,_result,8,
coords,data);
}
void StgFEM_StandardConditionFunctions_File9( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result )
{
static double *coords=NULL;
static double *data=NULL;
StgFEM_StandardConditionFunctions_FileN(node_lI,var_I,_context,_result,9,
coords,data);
}
void StgFEM_StandardConditionFunctions_File10( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result )
{
static double *coords=NULL;
static double *data=NULL;
StgFEM_StandardConditionFunctions_FileN(node_lI,var_I,_context,_result,10,
coords,data);
}
void StgFEM_StandardConditionFunctions_FileN( Node_LocalIndex node_lI, Variable_Index var_I, void* _context, void* _result, int file_num, double *coords, double *data)
{
FiniteElementContext * context = (FiniteElementContext*)_context;
FeVariable* feVariable = NULL;
FeMesh* mesh = NULL;
Dictionary* dictionary = context->dictionary;
double* result = (double*) _result;
double* coord;
int dim, i;
char *filename;
int N;
int result_index;
double factor;
feVariable = (FeVariable*)FieldVariable_Register_GetByName( context->fieldVariable_Register, "VelocityField" );
mesh = feVariable->feMesh;
coord = Mesh_GetVertex( mesh, node_lI );
char fileN_number[10], fileN_dim[15], fileN_name[15], fileN_N[15];
sprintf(fileN_number,"File%d",file_num);
sprintf(fileN_dim,"File%d_Dim",file_num);
sprintf(fileN_name,"File%d_Name",file_num);
sprintf(fileN_N,"File%d_N",file_num);
dim = Dictionary_GetInt( dictionary, fileN_dim);
filename = Dictionary_GetString( dictionary, fileN_name);
N = Dictionary_GetInt( dictionary, fileN_N);
Journal_Firewall(dim>=0 && dim<3,
Journal_Register( Error_Type,"StgFEM_StandardConditionFunctions_FileN"),
"%s must be either 0, 1, or 2, but was set to %d\n",
fileN_dim,dim);
Journal_Firewall(N>0,
Journal_Register( Error_Type,"StgFEM_StandardConditionFunctions_FileN"),
"%s must be greater than zero, but was set to %d.\n",
fileN_N,N);
if(data==NULL)
{
FILE *fp=fopen(filename,"r");
Journal_Firewall(fp!=NULL,
Journal_Register( Error_Type,"StgFEM_StandardConditionFunctions_FileN"),
"Bad filename for %s. Could not open %s\n",
fileN_name,filename);
data=(double *)malloc(N*sizeof(double));
coords=(double *)malloc(N*sizeof(double));
Journal_Firewall(data!=NULL && coords!=NULL,
Journal_Register( Error_Type,"StgFEM_StandardConditionFunctions_FileN"),
"Could not allocate enough memory for %s\n",file_num);
for(i=0;i<N;++i)
fscanf(fp,"%lf %lf",coords+i,data+i);
}
Journal_Firewall(!(coord[dim]<coords[0] || coord[dim]>coords[N-1]),
Journal_Register( Error_Type,"StgFEM_StandardConditionFunctions_FileN"),
"The range in the file '%s' does not cover this value %g\nIt only covers %g to %g.\n",
filename,coord[dim],coords[0],coords[1]);
result_index=Binary_Search(coords,0,N-1,coord[dim]);
factor=(coords[result_index+1]-coord[dim])
/ (coords[result_index+1]-coords[result_index]);
*result=data[result_index]*factor + data[result_index+1]*(1-factor);
}
int Binary_Search(double *data, int s, int e, const double value)
{
int start, end, midpoint;
start=s;
end=e;
midpoint=e;
midpoint=(end-start)/2 + start;
while(start!=midpoint)
{
if(data[midpoint]>=value)
end=midpoint;
else
start=midpoint;
midpoint=(end-start)/2 + start;
}
return start;
}
More information about the CIG-LONG
mailing list