You are here: Home / Resources / All
18.119.138.165

Resources: All

Find a resource
  1. 2008cigworkshoponmathematicalandcomputationalissuesinthesolidearthgeosciences x
  2. aagaard x
  3. shorttermcrustaldynamics x
  4. governance x
  5. 2021 x
  1. PyLith Troubleshooting Tips/Tricks

    30 Mar 2021 | Contributor(s): Brad Aagaard, Charles Williams, Matt Knepley

    PyLith Troubleshooting Tips/Tricks. May 16, 2011. Brad Aagaard. 

  2. Relax

    26 Oct 2021 | Software: Download | Contributor(s): Sylvain Barbot (primary-developer)

    Relax implements a semi-analytic Fourier-domain solver and equivalent body forces to compute quasi-static relaxation of stress perturbation.It is not an acronym, it's a motto!The open-source program Relax evaluates the displacement and stress in a half space with gravity due to...

  3. Reservoir Simulation Magma Dynamics

    12 Apr 2021 | Workshops | Contributor(s): Marc Hesse

    Reservoir Simulation Magma Dynamics. September 15-17, 2008. Marc Hesse. 

  4. Responsibilities of the EC

    12 Oct 2021 | Documents | Contributor(s): Executive Committee, Science Steering Committee

    Describes the roles and responsibilities of the Executive Committee.Approved 24 August 2021

  5. Responsibilities of the SSC

    12 Oct 2021 | Documents | Contributor(s): Executive Committee, Science Steering Commitee

    Roles and responsibilities of the Science Steering Committee.Approved 24 August 2021.

  6. Responsibilities of Working Groups

    12 Oct 2021 | Documents | Contributor(s): Executive Committee, Science Steering Committee

    Roles and responsibilities of Working Groups.Approved 24 August 2021.

  7. Review of PyLith Capabilities and Features

    07 Feb 2021 | Workshops | Contributor(s): Brad Aagaard, Charles Williams, Matthew Knepley

    Crustal Deformation Modeling Tutorial: Review of PyLith Capabilities and Features. June 24, 2013. Brad Aagaard, Charles Williams, Matthew Knepley. 

  8. Robust and Flexible Newton-Krylov based Solution Methods for Nonlinear Coupled Multiphysics Systems

    02 Apr 2021 | Workshops | Contributor(s): John Shadid, Paul T. Lin, Roger P. Pawlowski, Ray S. Tumninaro, Luis Chacon

    Robust and Flexible Newton-Krylov based Solution Methods for Nonlinear Coupled Multiphysics Systems. September 15-17, 2008. John N. Shadid. 

  9. Robust and Flexible Newton-Krylov based Solution Methods for Nonlinear Coupled Multiphysics Systems

    12 Apr 2021 | Workshops | Contributor(s): John Shadid

    Robust and Flexible Newton-Krylov based Solution Methods for Nonlinear Coupled Multiphysics Systems. September 15-17, 2008. John Shadid. 

  10. Running PyLith in Parallel

    08 Feb 2021 | Workshops | Contributor(s): Brad Aagaard, Matthew Knepley, Charles Williams

    Crustal Deformation Modeling Tutorial: Running PyLith in Parallel. June 28, 2013. Brad Aagaard, Matthew Knepley, Charles Williams.

  11. SELEN

    25 Oct 2021 | Software: Download | Contributor(s): Giorgio Spada (primary-developer), Daniele Melini (primary-developer)

    SELEN: a program for solving the "Sea Level Equation.The open source program SELEN solves numerically the so-called "Sea Level Equation" (SLE) for a spherical, layered, non-rotating Earth with Maxwell viscoelastic rheology. The SLE is an integral equation that was introduced in...

  12. SGS Bay Area Seismic Velocity Model, Construction and Earthquake Simulations

    28 Mar 2021 | Workshops | Contributor(s): Brad Aagaard, Thomas Brocher, Robert Jachens, Robert Simpson

    SGS Bay Area Seismic Velocity Model, Construction and Earthquake Simulations. July 14-17, 2013. Brad Aagaard. 

  13. Short-Term Crustal Dynamics

    29 Dec 2020 | Workshops | Contributor(s): Brad Aagaard

    Short-Term Crustal Dynamics. February 26, 2006. Brad Aagaard.

  14. Short-Term Tectonics Science

    02 Apr 2021 | Workshops | Contributor(s): Brad Aagaard

    Short-Term Tectonics Science. March 30-31, 2009. Brad Aagaard. 

  15. Solvers in PyLith

    08 Feb 2021 | Workshops | Contributor(s): Brad Aagaard, Matthew Knepley, Charles Williams

    Solvers in PyLith. Brad Aagaard, Matthew Knepley, Charles Williams. June 19-24, 2011. 

  16. Spontaneous Rupture via Fault Friction

    07 Feb 2021 | Workshops | Contributor(s): Brad Aagaard, Matthew Knepley, Charles Williams

    Crustal Deformation Modeling Tutorial: Spontaneous Rupture via Fault Friction. June 28, 2013.Brad Aagaard, Matthew Knepley, Charles Williams.

  17. Spontaneous Rupture via Fault Friction

    08 Feb 2021 | Workshops | Contributor(s): Brad Aagaard, Matthew Knepley, Charles Williams

    Crustal Deformation Modeling Tutorial: Spontaneous Rupture via Fault Friction. Brad Aagaard, Matthew Knepley, Charles Williams. June 24, 2014. 

  18. SSC May 2008 Meeting Presentations

    07 Feb 2021 | Documents | Contributor(s): Staff

    Presentations from the SSC Meeting held at CIG on May 29-30, 2008.

  19. The Path to Petascale Computing in Geodynamics

    29 Jan 2021 | Documents | Contributor(s): Staff

    The Path to Petascale Computing in Geodynamics. A report by the Science Steering Committee.Computational Infrastructure for Geodynamics (CIG). December 5, 2006.

  20. Thermodynamics of Mantle Systems

    12 Apr 2021 | Workshops | Contributor(s): Paula Smith, Laura Baker Hebert, Paul Asimow, Mike Gurnis

    Thermodynamics of mantle systems. September 15-17, 2008. Paula Smith, Laura Baker Hebert, Paul Asimow, Mike Gurnis.

  21. Ubiquitous Interactive Visualization of 3D Mantle Convection

    31 Mar 2021 | Workshops | Contributor(s): David Yuen

    Ubiquitous Interactive Visualization of 3D Mantle Convection. September 15-17, 2008. David Yuen. 

  22. Using multi-cycle earthquake simulations to understand crustal dynamics

    24 Jan 2021 | Workshops | Contributor(s): Brad Aagaard

    Using multi-cycle earthquake simulations to understand crustal dynamics. October 16-18, 2006. Brad Aagaard. 

  23. Virtual Quake

    26 Oct 2021 | Software: Download | Contributor(s): John M. Wilson, Kasey W. Schultz, Eric M. Heiein, Michael K. Sacks, John B. Rundle

    Virtual Quake (formerly Virtual California) is a boundary element code that performs simulations of fault systems based on stress interactions between fault elements to understand long term statistical behavior.