
Representation of the unified and interconnected SCOPED Cyberinfrastructure. At the top, the global map of seismic stations represents one of several featured sources of data sets. Data are hosted and processed on HPC and on Cloud clusters, which overlie pillars of wavefield simulations (left column) and data processing and analysis (right column). Cross-disciplinary research will facilitate the investigations of outstanding questions about Earth and fault dynamics.
SCOPED: Seismic COmputational Platform for Empowering Discovery
Contributed by Ebru Bozdag, Colorado School of Mines; Carl Tape, University of Alaska Fairbanks; Marine Denolle, University of Washington Seattle; Felix Waldhauser, Columbia University; Ian Wang, TACC, University of Texas
Seismic waves are our primary tools to explore the multi-scale structure of Earth— from its surface down to the inner core—and its wide range of processes, including earthquakes, volcanic activity, glacial processes, oceanic and environmental processes, and human-caused processes such as hydraulic fracturing or nuclear explosions.
The unprecedented growth of data and computational power have formed two pillars of seismology during the last decade. While numerical tools allow us to take full 3D complexity of wave propagation in seismic source and structural modeling, exponentially grown seismic data from traditional broadband seismometers as well as emerging instruments (i.e., distributed acoustic sensors, MERMAIDs, nodal arrays, etc.) offer new opportunities to monitor seismic activity and to improve resolution beneath continents and oceans. We need high-performance and Cloud computing to efficiently process large data sets and accurately model them. Seismic workflows involve .... [cont]