We use SPECFEM2D 8.1.0 ( Tromp et al., 2008; Komatitsch et al., 2023) published under the GPL3 license.
We thank the Computational Infrastructure for Geodynamics (http://geodynamics.org) which is funded by the National Science Foundation under awards EAR-0949446, 1550901 and 2149126.
Dimitri Komatitsch, Jeroen Tromp, Hom Nath Gharti, Daniel Peter, Eduardo Valero Cano, Etienne Bachmann, Alexis Bottero, Quentin Brissaud, Bryant Chow, Paul Cristini, Congyue Cui, Rene Gassmoeller, Michael Gineste, Felix Halpaap, Eric Heien, Jesus Labarta, Matthieu Lefebvre, Nicolas Le Goff, Pieyre Le Loher, … Zhendong Zhang. (2023). SPECFEM/specfem2d: SPECFEM2D v8.1.0 (v8.1.0). Zenodo. https://doi.org/10.5281/zenodo.10415228
Tromp, J.; Komatitsch, D.; Liu, Q. (2008), Spectral-element and adjoint methods in seismology, Communications in Computational Physics, 3 (1) , 1-32.
If you use the kernel capabilities of the code, please cite at least one article written by the developers of the package:
- Tromp, J.; Komatitsch, D.; Liu, Q. (2008), Spectral-element and adjoint methods in seismology, Communications in Computational Physics, 3 (1) , 1-32.
- Peter, D.; Komatitsch, D.; Luo, Y.; Martin, R.; Le Goff, N.; Casarotti, E.; Le Loher, P.; Magnoni, F.; Liu, Q.; Blitz, C.; Nissen-Meyer, T.; Basini, P.; Tromp, J. (2011), Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes: SPECFEM3D Version 2.0 'Sesame', Geophysical Journal International, 186 (2) , 721-739, doi: 10.1111/j.1365-246X.2011.05044.x, url: http://gji.oxfordjournals.org/cgi/doi/10.1111/j.1365-246X.2011.05044.x
- Liu, Q.; Tromp, J. (2006), Finite-Frequency Kernels Based on Adjoint Methods, Bulletin of the Seismological Society of America, 96 (6) , 2383-2397, doi: 10.1785/0120060041, url: http://www.bssaonline.org/cgi/doi/10.1785/0120060041
- Morency, C.; Luo, Y.; Tromp, J. (2009), Finite-frequency kernels for wave propagation in porous media based upon adjoint methods, Geophysical Journal International, 179 (2) , 1148-1168, doi: 10.1111/j.1365-246X.2009.04332.x, url: http://gji.oxfordjournals.org/cgi/doi/10.1111/j.1365-246X.2009.04332.x
If you use the SCOTCH / CUBIT non-structured capabilities, please also cite:
- Martin, R.; Komatitsch, D.; Blitz, C.; Le Goff, N. (2008), Simulation of seismic wave propagation in an asteroid based upon an unstructured MPI spectral-element method: blocking and non-blocking communication strategies, International Conference on High Performance Computing for Computational Science, 350-363.
If you use this code for your own research, please cite at least one article written by the developers of the package, for instance:
- Tromp, J.; Komatitsch, D.; Liu, Q. (2008), Spectral-element and adjoint methods in seismology, Communications in Computational Physics, 3 (1) , 1-32.
- Peter, D.; Komatitsch, D.; Luo, Y.; Martin, R.; Le Goff, N.; Casarotti, E.; Le Loher, P.; Magnoni, F.; Liu, Q.; Blitz, C.; Nissen-Meyer, T.; Basini, P.; Tromp, J. (2011), Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes: SPECFEM3D Version 2.0 'Sesame', Geophysical Journal International, 186 (2) , 721-739, doi: 10.1111/j.1365-246X.2011.05044.x, url: http://gji.oxfordjournals.org/cgi/doi/10.1111/j.1365-246X.2011.05044.x
- Vai, R.; Castillo-Covarrubias, J.M.; Sánchez-Sesma, F.J.; Komatitsch, D.; Vilotte, J.-P. (1999), Elastic wave propagation in an irregularly layered medium, Soil Dynamics and Earthquake Engineering, 18 (1) , 11-18, doi: 10.1016/S0267-7261(98)00027-X, url: http://linkinghub.elsevier.com/retrieve/pii/S026772619800027X
- Lee, S.-J.; Chan, Y.-C.; Komatitsch, D.; Huang, B.-S.; Tromp, J. (2009), Effects of Realistic Surface Topography on Seismic Ground Motion in the Yangminshan Region of Taiwan Based Upon the Spectral-Element Method and LiDAR DTM, Bulletin of the Seismological Society of America, 99 (2a) , 681-693, doi: 10.1785/0120080264, url: http://www.bssaonline.org/cgi/doi/10.1785/0120080264
- Lee, S.-J.; Chen, H.-W.; Liu, Q.; Komatitsch, D.; Huang, B.-S.; Tromp, J. (2008), Three-Dimensional Simulations of Seismic-Wave Propagation in the Taipei Basin with Realistic Topography Based upon the Spectral-Element Method, Bulletin of the Seismological Society of America, 98 (1) , 253-264, doi: 10.1785/0120070033, url: http://www.bssaonline.org/cgi/doi/10.1785/0120070033
- Lee, S.-J.; Komatitsch, D.; Huang, B.-S.; Tromp, J. (2009), Effects of Topography on Seismic-Wave Propagation: An Example from Northern Taiwan, Bulletin of the Seismological Society of America, 99 (1) , 314-325, doi: 10.1785/0120080020, url: http://www.bssaonline.org/cgi/doi/10.1785/0120080020
- Komatitsch, D.; Erlebacher, G.; Göddeke, D.; Michéa, D. (2010), High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster, Journal of Computational Physics, 229 (20) , 7692-7714, doi: 10.1016/j.jcp.2010.06.024, url: http://linkinghub.elsevier.com/retrieve/pii/S0021999110003396
- Komatitsch, D.; Michéa, D.; Erlebacher, G. (2009), Porting a high-order finite-element earthquake modeling application to NVIDIA graphics cards using CUDA, Journal of Parallel and Distributed Computing, 69 (5) , 451-460, doi: 10.1016/j.jpdc.2009.01.006, url: http://linkinghub.elsevier.com/retrieve/pii/S0743731509000069
- Liu, Q.; Polet, J.;Komatitsch, D.; Tromp, J. (2004), Spectral-Element Moment Tensor Inversions for Earthquakes in Southern California, Bulletin of the Seismological Society of America, 94 (5) , 1748-1761, doi: 10.1785/012004038, url: http://bssa.geoscienceworld.org/cgi/doi/10.1785/012004038
- Chaljub, E.; Komatitsch, D.; Vilotte, J.P.; Capdeville, Y.; Valette, B.; Festa, G. (2007), Spectral Element Analysis in Seismology, Advances in wave propagation in heterogeneous media, 48, 365-419, Elsevier - Academic Press, London, UK
- Komatitsch, D.; Tromp, J. (1999), Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophysical journal international, 139 (3) , 806-822, Oxford University Press.
- Komatitsch, D.; Vilotte, J.-P. (1998), The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures, Bulletin of the Seismological Society of America, 88 (2) , 368-392, url: http://www.bssaonline.org/content/88/2/368.abstract
- Komatitsch, D.; Liu, Q.; Tromp, J.; Suss, P.; Stidham, C.; Shaw, J.H. (2004), Simulations of Ground Motion in the Los Angeles Basin based upon the Spectral-Element Method, Bulletin of the Seismological Society of America, 94 (1) , 187-206, doi: 10.1785/0120030077
- Morency, C.; Tromp, J. (2008), Spectral-element simulations of wave propagation in porous media, Geophysical Journal International, 175 (1) , 301-345, doi: 10.1111/j.1365-246X.2008.03907.x, url: http://gji.oxfordjournals.org/cgi/doi/10.1111/j.1365-246X.2008.03907.x
- Blanc, E.; Komatitsch, D.; Chaljub, E.; Lombard, B.; Xie, Z. (2016), Highly accurate stability-preserving optimization of the Zener viscoelastic model, with application to wave propagation in the presence of strong attenuation, Geophysical Journal International, 205 (1) , 427-439, doi: 10.1093/gji/ggw024, url: http://gji.oxfordjournals.org/content/205/1/427.abstract
If you use the C-PML absorbing layer capabilities of the code, please cite at least one article written by the developers of the package, for instance:
- Xie, Z.; Komatitsch, D.; Martin, R.; Matzen, R. (2014), Improved forward wave propagation and adjoint-based sensitivity kernel calculations using a numerically stable finite-element PML, Geophysical Journal International, 198 (3) , 1714-1747, doi: 10.1093/gji/ggu219, url: http://gji.oxfordjournals.org/cgi/doi/10.1093/gji/ggu219
- Xie, Z.; Matzen, R.; Cristini, P.; Komatitsch, D.; Martin, R. (2016), A perfectly matched layer for fluid-solid problems: Application to ocean-acoustics simulations with solid ocean bottoms, jasa, 140 (1) , 165-175, doi: 10.1121/1.4954736
If you use the attenuation (anelastic/viscoelastic) capabilities of the code, please cite at least one article written by the developers of the package, for instance:
- Blanc, E.; Komatitsch, D.; Chaljub, E.; Lombard, B.; Xie, Z. (2016), Highly accurate stability-preserving optimization of the Zener viscoelastic model, with application to wave propagation in the presence of strong attenuation, Geophysical Journal International, 205 (1) , 427-439, doi: 10.1093/gji/ggw024, url: http://gji.oxfordjournals.org/content/205/1/427.abstract
If you are not using a regular release, that is you have cloned from master on the github repository, we recommend that you make the following changes to the citation reference:
- substitute the download year, YYYY, for 9999
- substitute the git short hash for the doi: git: GITHASH8
- append the download date: downloaded on DD MON YYYY
For previous versions, please substitute the appropriate version and year in the above.
Download references [.bib]