By Guy Masters (primary-developer)1, John Woodhouse (primary-developer)2, Freeman Gilbert (primary-developer)3, Michael Ritzwoller (primary-developer)1, Misha Barmine1, Sue Kientz4
1. University of Colorado at Boulder 2. Harvard University 3. University of California, San Diego 4. Computational Infrastructure for Geodynamics, Caltech
Zhao, K., Luo, Y., Yang, Y., Yang, X., (2021), "High-resolution lithospheric structures of the Qinling-Dabie orogenic belt: Implications for deep subduction and delamination of continental lithosphere", Tectonophysics, 806: pg: 228799, . Cited by:
Ringler, A. T., Anthony, R. E., Dalton, C. A., Wilson, D. C., (2021), "Rayleigh-Wave Amplitude Uncertainty across the Global Seismographic Network and Potential Implications for Global Tomography", Bulletin of the Seismological Society of America, : (DOI: 10.1785/0120200255). Cited by:
Maguire, R. R., Schmerr, N. C., Lekic, V., Hurford, T. A., Dai, L., Rhoden, A. R., (2021), "Constraining Europa's ice shell thickness with fundamental mode surface wave dispersion", Icarus, : pg: 114617, . Cited by:
Shi, J., Li, R., Xi, Y., Saad, Y., Hoop, M. V. De, (2021), "Planetary normal mode computation: Parallel algorithms, performance, and reproducibility", IEEE Transactions on Parallel & Distributed Systems, IEEE Computer Society, Los Alamitos, CA, USA: (DOI: 10.1109/TPDS.2021.3050448). Cited by:
Lau, H. C. P., Al-Attar, D., (2021), "Sensitivity kernels for body tides on laterally heterogeneous planets based on adjoint methods", Geophysical Journal International, : (DOI: 10.1093/gji/ggab254). Cited by:
Gama, I., Fischer, K. M., Eilon, Z., Krueger, H. E., Dalton, C. A., Flesch, L. M., (2021), "Shear-wave velocity structure beneath Alaska from a Bayesian joint inversion of Sp receiver functions and Rayleigh wave phase velocities", Earth and Planetary Science Letters, 560: pg: 116785, . Cited by:
Butler, R., Tsuboi, S., (2021), "Antipodal seismic reflections upon shear wave velocity structures within Earth's inner core", Physics of the Earth and Planetary Interiors, : pg: 106802, . Cited by:
Altoe, I., Eeken, T., Goes, S., Foster, A., Darbyshire, F., (2020), "Thermo-compositional structure of the north-eastern Canadian Shield from Rayleigh wave dispersion analysis as a record of its tectonic history", Earth and Planetary Science Letters, 547: pg: 116465, . Cited by:
Akbarashrafi, Fatemeh, (2020), "Resolvability of the 3D density structure of the Earths mantle using normal mode theory", Utrecht University, Netherlands: : 978-90-6266-571-6, . Cited by:
Zhang, S., Wang, R., Dahm, T., Zhou, S., Heimann, S., (2020), "Prompt elasto-gravity signals (PEGS) and their potential use in modern seismology", Earth and Planetary Science Letters, 536: pg: 116150, (DOI: 10.1016/j.epsl.2020.116150). Cited by:
Szwillus, W., Ebbing, J., Steinberger, B., (2020), "Increased density of large low-velocity provinces recovered by seismologically constrained gravity inversion", Solid Earth, 11, 4: pg: 1551--1569, (DOI: 10.5194/se-11-1551-2020). Cited by:
Talavera-Soza, S., Deuss, A., (2020), "New measurements of long period radial modes using large earthquakes", Geophysical Journal International, : (DOI: 10.1093/gji/ggaa499). Cited by:
Nowacki, A., (2020), "SeisModels.jl: A Julia package for models of the Earth's interior", Journal of Open Source Software, The Open Journal, 5, 47: pg: 2043, . Cited by:
Fischer, K. M., Rychert, C. A., Dalton, C. A., Miller, M. S., Beghein, C., Schutt, D. L., (2020), "A comparison of oceanic and continental mantle lithosphere", Physics of the Earth and Planetary Interiors, 309: pg: 106600, . Cited by:
Bützler, Clara, (2020), "Gravity gradients of prompt elasto-gravity signals Aspects of their simulation and the possibility to measure them: A case study for the Tohoku-Oki earthquake", FSU Jena: . Cited by:
Delbridge, B. G., Ishii, M., (2020), "Reconciling elasticity tensor constraints from mineral physics and seismological observations: applications to the Earth's inner core", Geophysical Journal International, 222, 2: pg: 1135--1145, (DOI: 10.1093/gji/ggaa220). Cited by:
Stevanović, I. J. Daubar P. Lognonné N. A. Teanby G. S. Collins J. Clinton S. Stähler A. Spiga F. Karakostas S. Ceylan M. Malin A. S. McEwen R. Maguire C. Charalambous K. Onodera A. Lucas L. Rolland J. Vaubaillon T. Kawamura M. Böse A. Horleston M., Miljković, K., Rajić, B. Fernando Q. Huang D. Giardini C. S. Larmat K. Leng A., Banerdt, N. Schmerr N. Wójcicka T. Pike J. Wookey S. Rodriguez R. Garcia M. E. Banks L. Margerin L. Posiolova B., (2020), "A New Crater Near InSight: Implications for Seismic Impact Detectability on Mars", Journal of Geophysical Research: Planets, n/a, n/a: pg: 2020, (DOI: 10.1029/2020JE006382). Cited by:
Mélanie Drilleau, Éric Beucler, Philippe Lognonné, Mark P. Panning, Brigitte Knapmeyer-Endrun, W. Bruce Banerdt, Caroline Beghein, Savas Ceylan, Martin van Driel, Rakshit Joshi, Taichi Kawamura, Amir Khan, Sabrina Menina, Attilio Rivoldini, Henri Samuel, Simon Stähler, Haotian Xu, Mickaël Bonnin, John Clinton, Domenico Giardini, Balthasar Kenda, Vedran Lekic, Antoine Mocquet, Naomi Murdoch, Martin Schimmel, Suzanne E. Smrekar, Éléonore Stutzmann, Benoit Tauzin, Saikiran Tharimena, (2020), "MSS/1: Single-station and single-event marsquake inversion", Earth and Space Science, n/a, n/a: pg: 2020, (DOI: 10.1029/2020EA001118). Cited by:
Xu, H., Beghein, C., Panning, M. P., Drilleau, M., Lognonné, P., Driel, M., Ceylan, S., Böse, M., Brinkman, N., Clinton, J., Euchner, F., Giardini, D., Horleston, A., Kawamura, T., Kenda, B., Murdoch, N., Stähler, S., (2020), "Measuring Fundamental and Higher Mode Surface Wave Dispersion on Mars From Seismic Waveforms", Earth and Space Science, n/a, n/a: . Cited by:
Ringler, A. T., Steim, J., Wilson, D. C., Widmer-Schnidrig, R., Anthony, R. E., (2019), "Improvements in Seismic Resolution and Current Limitations in the Global Seismographic Network", Geophysical Journal International, 220, 1: pg: 508--521, (DOI: 10.1093/gji/ggz473). Cited by:
O'Donnell, J. P., Stuart, G. W., Brisbourne, A. M., Selway, K., Yang, Y., Nield, G. A., Whitehouse, P. L., Nyblade, A. A., Wiens, D. A., Aster, R. C., Anandakrishnan, S., Huerta, A. D., Wilson, T., Winberry, J. P., (2019), "The uppermost mantle seismic velocity structure of West Antarctica from Rayleigh wave tomography: Insights into tectonic structure and geothermal heat flow", Earth and Planetary Science Letters, 522: pg: 219--233, (DOI: 10.1016/j.epsl.2019.06.024). Cited by:
O'Donnell, J. P., Brisbourne, A. M., Stuart, G. W., Dunham, C. K., Yang, Y., Nield, G. A., Whitehouse, P. L., Nyblade, A. A., Wiens, D. A., Anandakrishnan, S., Aster, R. C., Huerta, A. D., Lloyd, A. J., Wilson, T., Winberry, J. P., (2019), "Large Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise", Geochemistry, Geophysics, Geosystems, 20, 11: pg: 5014--5037, (DOI: 10.1029/2019GC008459). Cited by:
Ma, Z., Dalton, C. A., (2019), "Evidence for dehydration-modulated small-scale convection in the oceanic upper mantle from seafloor bathymetry and Rayleigh wave phase velocity", Earth and Planetary Science Letters, 510: pg: 12--25, (DOI: 10.1016/j.epsl.2018.12.030). Cited by:
Janiszewski, H. A., Gaherty, J. B., Abers, G. A., Gao, H., Eilon, Z. C., (2019), "Amphibious surface-wave phase-velocity measurements of the Cascadia subduction zone", Geophysical Journal International, 217, 3: pg: 1929--1948, (DOI: 10.1093/gji/ggz051). Cited by:
Lognonné, P., Banerdt, W. B., Giardini, D., Pike, W. T., Christensen, U., Laudet, P., Raucourt, S., Zweifel, P., Calcutt, S., Bierwirth, M., Hurst, K. J., Ijpelaan, F., Umland, J. W., Llorca-Cejudo, R., Larson, S. A., Garcia, R. F., Kedar, S., Knapmeyer-Endrun, B., Mimoun, D., Mocquet, A., Panning, M. P., Weber, R. C., Sylvestre-Baron, A., Pont, G., Verdier, N., Kerjean, L., Facto, L. J., Gharakanian, V., Feldman, J. E., Hoffman, T. L., Klein, D. B., Klein, K., Onufer, N. P., Paredes-Garcia, J., Petkov, M. P., Willis, J. R., Smrekar, S. E., Drilleau, M., Gabsi, T., Nebut, T., Robert, O., Tillier, S., Moreau, C., Parise, M., Aveni, G., Ben Charef, S., Bennour, Y., Camus, T., Dandonneau, P. A., Desfoux, C., Lecomte, B., Pot, O., Revuz, P., Mance, D., tenPierick, J., Bowles, N. E., Charalambous, C., Delahunty, A. K., Hurley, J., Irshad, R., Liu, H., Mukherjee, A. G., Standley, I. M., Stott, A. E., Temple, J., Warren, T., Eberhardt, M., Kramer, A., Khne, W., Miettinen, E-P, Monecke, M., Aicardi, C., Andr, M., Baroukh, J., Borrien, A., Bouisset, A., Boutte, P., Brethom, K., Brysbaert, C., Carlier, T., Deleuze, M., Desmarres, J. M., Dilhan, D., Doucet, C., Faye, D., Faye-Refalo, N., Gonzalez, R., Imbert, C., Larigauderie, C., Locatelli, E., Luno, L., Meyer, J-R, Mialhe, F., Mouret, J. M., Nonon, M., Pahn, Y., Paillet, A., Pasquier, P., Perez, G., Perez, R., Perrin, L., Pouilloux, B., Rosak, A., Savin deÂ~Larclause, I., Sicre, J., Sodki, M., Toulemont, N., Vella, B., Yana, C., Alibay, F., Avalos, O. M., Balzer, M. A., Bhandari, P., Blanco, E., Bone, B. D., Bousman, J. C., Bruneau, P., Calef, F. J., Calvet, R. J., DÂAgostino, S. A., Santos, G., Deen, R. G., Denise, R. W., Ervin, J., Ferraro, N. W., Gengl, H. E., Grinblat, F., Hernandez, D., Hetzel, M., Johnson, M. E., Khachikyan, L., Lin, J. Y., Madzunkov, S. M., Marshall, S. L., Mikellides, I. G., Miller, E. A., Raff, W., Singer, J. E., Sunday, C. M., Villalvazo, J. F., Wallace, M. C., Banfield, D., Rodriguez-Manfredi, J. A., Russell, C. T., Trebi-Ollennu, A., Maki, J. N., Beucler, E., Bse, M., Bonjour, C., Berenguer, J. L., Ceylan, S., Clinton, J., Conejero, V., Daubar, I., Dehant, V., Delage, P., Euchner, F., Estäve, I., Fayon, L., Ferraioli, L., Johnson, C. L., Gagnepain-Beyneix, J., Golombek, M., Khan, A., Kawamura, T., Kenda, B., Labrot, P., Murdoch, N., Pardo, C., Perrin, C., Pou, L., Sauron, A., Savoie, D., Stähler, S., Stutzmann, E., Teanby, N. A., Tromp, J., Driel, M., Wieczorek, M., Widmer-Schnidrig, R., Wookey, J., (2019), "SEIS: Insight's Seismic Experiment for Internal Structure of Mars", Space Science Reviews, 215, 1: pg: 12, (DOI: 10.1007/s11214-018-0574-6). Cited by:
Fontaine, F. R., Roult, G., Hejrani, B., Michon, L., Ferrazzini, V., Barruol, G., Tkalcic, H., Di Muro, A., Peltier, A., Reymond, D., Staudacher, T., Massin, F., (2019), "Very- and ultra-long-period seismic signals prior to and during caldera formation on La Réunion Island", Scientific Reports, 9, 1: pg: 8068, (DOI: 10.1038/s41598-019-44439-1). Cited by:
Cheng, W., Hu, X. G., Liu, L. T., (2019), "Azimuthal anisotropy beneath the deep central Aleutian subduction zone from normal mode coupling", Journal of Geodynamics, 133: pg: 101673, (DOI: 10.1016/j.jog.2019.101673). Cited by:
Ghobadi-Far, K., Han, S-C, Sauber, J., Lemoine, F., Behzadpour, S., Mayer-Gürr, T., Sneeuw, N., Okal, E., (2019), "Gravitational changes of the Earth's free oscillation from earthquakes: Theory and feasibility study using GRACE inter-satellite tracking", Journal of Geophysical Research: Solid Earth, ja: (DOI: 10.1029/2019JB017530). Cited by:
Xie, J., Chu, R., Yang, Y., (2018), "3-D Upper-Mantle Shear Velocity Model Beneath the Contiguous United States Based on Broadband Surface Wave from Ambient Seismic Noise", Pure and Applied Geophysics, : (DOI: 10.1007/s00024-018-1881-2). Cited by:
Russell, J. B., Gaherty, J. B., Lin, P-Y P., Lizarralde, D., Collins, J. A., Hirth, G., Evans, R. L., (2018), "High-resolution constraints on Pacific upper mantle petrofabric inferred from surface-wave anisotropy", Journal of Geophysical Research: Solid Earth, 124, 1: pg: 631--657, (DOI: 10.1029/2018JB016598). Cited by:
Ruan, Y., Forsyth, D. W., Bell, S. W., (2018), "Shear attenuation beneath the Juan de Fuca plate: Implications for mantle flow and dehydration", Earth and Planetary Science Letters, 496: pg: 189--197, (DOI: 10.1016/j.epsl.2018.05.035). Cited by:
McLellan, M., Schaeffer, A. J., Audet, P., (2018), "Structure and fabric of the crust and uppermost mantle in the northern Canadian Cordillera from Rayleigh-wave tomography", Tectonophysics, 724-725: pg: 28--41, (DOI: 10.1016/j.tecto.2018.01.011). Cited by:
Majstorovic, J., Rosat, S., Lambotte, S., Rogister, Y., (2018), "Testing performances of the optimal sequence estimation and autoregressive method in the frequency domain for estimating eigenfrequencies and zonal structure coefficients of low-frequency normal modes", Geophysical Journal International, 216, 2: pg: 1157--1176, (DOI: 10.1093/gji/ggy483). Cited by:
Liu, T., Zhang, H., (2018), "Asymptotic analysis for dispersion relations and travel times in noise cross-correlations: spherically symmetric case", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 474, 2218: pg: 20180382, (DOI: 10.1098/rspa.2018.0382). Cited by:
Juhel, K., Montagner, J-P, Vallée, M., Ampuero, J. P., Barsuglia, M., Bernard, P., Clévédé, E., Harms, J., Whiting, B. F., (2018), "Normal mode simulation of prompt elastogravity signals induced by an earthquake rupture", Geophysical Journal International, 216, 2: pg: 935--947, (DOI: 10.1093/gji/ggy436). Cited by:
Gregorian, P., (2018), "Synthetics and Green's functions for PREM in the Generalized Spherical Harmonic expansion", Utrecht University, Utrecht, The Netherlands: . Cited by:
Eilon, Z., Fischer, K. M., Dalton, C. A., (2018), "An adaptive Bayesian inversion for upper mantle structure using surface waves and scattered body waves", Geophysical Journal International, 214, 1: pg: 232--253, (DOI: 10.1093/gji/ggy137). Cited by:
Cheng, X., Liu, Q., Li, P., Liu, Y., (2018), "Inverting Rayleigh surface wave velocities for crustal thickness in eastern Tibet and the western Yangtze craton based on deep learning neural networks", Nonlinear Processes in Geophysics Discussions, 26: pg: 61--71, (DOI: 10.5194/npg-26-61-2019). Cited by:
Bissig, F., Khan, A., Driel, M., Stähler, S. C., Giardini, D., Panning, M., Drilleau, Mélanie, Lognonné, P., Gudkova, T. V., Zharkov, V. N., Plesa, A-C, Banerdt, W. B., (2018), "On the Detectability and Use of Normal Modes for Determining Interior Structure of Mars", Space Science Reviews, 214, 8: pg: 114, (DOI: 10.1007/s11214-018-0547-9). Cited by:
Colton, L., L., B. S., George, Z., W., P. R., Fan-Chi, L., C., E. Z., (2018), "Mid-crustal deformation in the Central Andes constrained by radial anisotropy", Journal of Geophysical Research: Solid Earth, ja: (DOI: 10.1029/2017JB014936). Cited by:
Zheng, Y., Hu, H., (2017), "Nonlinear Signal Comparison and High-Resolution Measurement of Surface-Wave Dispersion", Bulletin of the Seismological Society of America, Bulletin of the Seismological Society of America, 107, 3: pg: 1551--1556, (DOI: 10.1785/0120160242). Cited by:
Ravenna, M., Lebedev, S., (2017), "Bayesian inversion of surface-wave data for radial and azimuthal shear-wave anisotropy, with applications to central Mongolia and west-central Italy", Geophysical Journal International, 213, 1: pg: 278--300, (DOI: 10.1093/gji/ggx497). Cited by:
Godfrey, K. E., Dalton, C. A., Ritsema, J., (2017), "Seafloor age dependence of Rayleigh wave phase velocities in the Indian Ocean", Geochemistry, Geophysics, Geosystems, 18, 5: pg: 1926--1942, (DOI: 10.1002/2017GC006824). Cited by:
Attanayake, J., Ferreira, A. M. G., Berbellini, A., Morelli, A., (2017), "Crustal structure beneath Portugal from teleseismic Rayleigh Wave Ellipticity", Tectonophysics, 712-713: pg: 344--361, (DOI: 10.1016/j.tecto.2017.06.001). Cited by:
Zábranová, E., Matyska, C., (2016), "Inversion of the moment-tensor Mrr components of the 2012 Sumatra strike-slip double earthquake using radial normal modes", Physics of the Earth and Planetary Interiors, 262: pg: 1--7, (DOI: 10.1016/j.pepi.2016.10.001). Cited by:
Todoriki, M., Furumura, T., Maeda, T., (2016), "Effects of seawater on elongated duration of ground motion as well as variation in its amplitude for offshore earthquakes", Geophysical Journal International, 208, 1: pg: 226--233, (DOI: 10.1093/gji/ggw388). Cited by:
Lognonné, P., Karakostas, F., Rolland, L., Nishikawa, Y., (2016), "Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives", The Journal of the Acoustical Society of America, 140, 2: pg: 1447--1468, (DOI: 10.1121/1.4960788). Cited by:
Hu, X. G., (2016), "Observations of the azimuthal dependence of normal mode coupling below 4 mHz at the South Pole and its nearby stations: Insights into the anisotropy beneath the Transantarctic Mountains", Physics of the Earth and Planetary Interiors, 257: pg: 57--78, (DOI: 10.1016/j.pepi.2016.05.011). Cited by:
Hitchman, S., Wijk, K., Davidson, Z., (2016), "Monitoring attenuation and the elastic properties of an apple with laser ultrasound", Postharvest Biology and Technology, 121: pg: 71--77, (DOI: 10.1016/j.postharvbio.2016.07.006). Cited by:
Dalton, C. A., Bao, X., Ma, Z., (2016), "The thermal structure of cratonic lithosphere from global Rayleigh wave attenuation", Earth and Planetary Science Letters, 457: pg: 250--262, (DOI: 10.1016/j.epsl.2016.10.014). Cited by:
Cheng, X-Q, Liu, Q-H, Li, P. P., (2016), "Inverting Rayleigh surface wave velocities for eastern Tibet and western Yangtze craton crustal thickness based on deep learning neural networks", Nonlinear Processes in Geophysics Discussions, 2016: pg: 1--9, (DOI: 10.5194/npg-2016-39). Cited by:
Zheng, Y., Nimmo, F., Lay, T., (2015), "Seismological implications of a lithospheric low seismic velocity zone in Mars", Physics of the Earth and Planetary Interiors, 240: pg: 132--141, (DOI: 10.1016/j.pepi.2014.10.004). Cited by:
Xie, J., Ritzwoller, M. H., Brownlee, S. J., Hacker, B. R., (2015), "Inferring the oriented elastic tensor from surface wave observations: preliminary application across the western United States", Geophysical Journal International, 201, 2: pg: 996--1019, (DOI: 10.1093/gji/ggv054). Cited by:
Mitsui, Y., Heki, K., (2015), "Report on a characteristic oscillation about 38 mHz (26 s) in northeastern Japan following surface wave of the 2011 Tohoku megathrust earthquake", Geophysical Journal International, 202, 1: pg: 419--423, (DOI: 10.1093/gji/ggv147). Cited by:
Wit, R. W. L., Trampert, J., (2015), "Robust constraints on average radial lower mantle anisotropy and consequences for composition and texture", Earth and Planetary Science Letters, 429: pg: 101--109, (DOI: 10.1016/j.epsl.2015.07.057). Cited by:
Yuan, K., Beghein, C., (2014), "Three-dimensional variations in Love and Rayleigh wave azimuthal anisotropy for the upper 800 km of the mantle", Journal of Geophysical Research: Solid Earth, 119, 4: pg: 3232--3255, (DOI: 10.1002/2013JB010853). Cited by:
Schmandt, B., Lin, F-C, (2014), "P and S wave tomography of the mantle beneath the United States", Geophysical Research Letters, 41, 18: pg: 6342--6349, (DOI: 10.1002/2014GL061231). Cited by:
Pasyanos, M. E., Masters, T. G., Laske, G., Ma, Z., (2014), "LITHO1.0: An updated crust and lithospheric model of the Earth: LITHO1.0", Journal of Geophysical Research: Solid Earth, 119, 3: pg: 2153--2173, (DOI: 10.1002/2013JB010626). Cited by:
Hu, X. G., Jiang, Y., Sun, H. P., (2014), "Assessing the scalar moment of moderate earthquake and the effect of lateral heterogeneity on normal modes--An example from the 2013/04/20 Lushan earthquake, Sichuan, China", Physics of the Earth and Planetary Interiors, 232: pg: 61--71, (DOI: 10.1016/j.pepi.2014.04.005). Cited by:
Wit, R. W. L., Käufl, P. J., Valentine, A. P., Trampert, J., (2014), "Bayesian inversion of free oscillations for Earth's radial (an)elastic structure", Physics of the Earth and Planetary Interiors, 237: pg: 1--17, (DOI: 10.1016/j.pepi.2014.09.004). Cited by:
Agius, M. R., Lebedev, S., (2013), "Tibetan and Indian lithospheres in the upper mantle beneath Tibet: Evidence from broadband surface-wave dispersion: Tibetan, Indian Lithosphere Beneath Tibet", Geochemistry, Geophysics, Geosystems, 14, 10: pg: 4260--4281, (DOI: 10.1002/ggge.20274). Cited by:
Yildiz, S., Sabra, K., Dorman, L. R. M., Kuperman, W. A., (2013), "Using hydroacoustic stations as water column seismometers", Geophysical Research Letters, 40, 11: pg: 2573--2578, (DOI: 10.1002/grl.50371). Cited by:
Xie, J., Ritzwoller, M. H., Shen, W., Yang, Y., Zheng, Y., Zhou, L., (2013), "Crustal radial anisotropy across Eastern Tibet and the Western Yangtze Craton", Journal of Geophysical Research: Solid Earth, 118, 8: pg: 4226--4252, (DOI: 10.1002/jgrb.50296). Cited by:
Sodoudi, F., Yuan, X., Kind, R., Lebedev, S., Adam, J. M-C, Kästle, E., Tilmann, F., (2013), "Seismic evidence for stratification in composition and anisotropic fabric within the thick lithosphere of Kalahari Craton: Thick and Layered Mantle Lithosphere", Geochemistry, Geophysics, Geosystems, 14, 12: pg: 5393--5412, (DOI: 10.1002/2013GC004955). Cited by:
Hu, X., Jiang, Y., (2013), "Evaluation of the seismic moment of the April 20, 2013 Lushan earthquake", Earthquake Science, 26, 3-4: pg: 169--177, (DOI: 10.1007/s11589-013-0029-9). Cited by:
Drilleau, M., Beucler, E., Mocquet, A., Verhoeven, O., Moebs, G., Burgos, G., Montagner, J-P, Vacher, P., (2013), "A Bayesian approach to infer radial models of temperature and anisotropy in the transition zone from surface wave dispersion curves", Geophysical Journal International, 195, 2: pg: 1165--1183, (DOI: 10.1093/gji/ggt284). Cited by:
Driel, M., Wassermann, J., Nader, M. F., Schuberth, B. S. A., Igel, H., (2012), "Strain rotation coupling and its implications on the measurement of rotational ground motions", Journal of Seismology, 16, 4: pg: 657--668, (DOI: 10.1007/s10950-012-9296-5). Cited by:
Moschetti, M. P., Ritzwoller, M. H., Lin, F-C, Yang, Y., (2010), "Crustal shear wave velocity structure of the western United States inferred from ambient seismic noise and earthquake data", Journal of Geophysical Research, 115, B10: pg: B10306, (DOI: 10.1029/2010JB007448). Cited by: